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Abstra
tUnsupervised 
lassi�
ation, or 
lustering, is one of the basi
 problems in data analysis. Whilethe problem of unsupervised 
lassi�
ation of independent random variables has been deeplyinvestigated, the problem of unsupervised 
lassi�
ation of dependent random variables, andin parti
ular the problem of segmentation of mixtures of Markov sour
es, has been hardly ad-dressed. At the same time supervised 
lassi�
ation of Markov sour
es has be
ome a fundamentalproblem with many important appli
ations, su
h as analysis of texts, handwriting and spee
h,neural spike trains and bio-mole
ular sequen
es. This question, previously approa
hed withhidden Markov models (HMMs), in the last de
ade found additional interesting solutions us-ing adaptive statisti
al models with improved learnability properties. One of su
h models isPredi
tion SuÆx Tree (PST), suggested in [RST96℄.Our 
urrent work 
omes to 
lose the gap between our abilities in supervised and unsupervisedlearning. We des
ribe and analyze a novel information theoreti
 algorithm for unsupervisedsegmentation of sequen
es into alternating variable memory Markov sour
es, �rst presented in[SBT01b℄. The algorithm is based on a new pro
edure for PST learning that uses MDL prin
ipleto 
ontrol PST 
omplexity and gets no external parameters. The algorithm embeds 
ompetitivelearning of the PST models into model 
lustering pro
edure, based on rate distortion theory
ombined with deterministi
 annealing. The 
omplexity of the mixture (
lustering resolution)is gradually in
reased through annealing of the rate-distortion tradeo�. As a result we obtaina hierar
hi
al top-down segmentation of sequen
es into alternating variable memory Markovsour
es.The method is su

essfully applied to unsupervised segmentation of multilingual texts intolanguages, where it is able to infer 
orre
tly both the number of languages and the languageswit
hing points. When applied to protein sequen
e families (results of the [BSMT01℄ work),we demonstrate the method's ability to identify biologi
ally meaningful sub-sequen
es withinthe proteins, whi
h 
orrespond to signatures of important fun
tional sub-units, 
alled domains.Our approa
h to proteins 
lassi�
ation (through the obtained signatures) is shown to have both
on
eptual and pra
ti
al advantages over the 
urrently used methods.
1





Chapter 1Introdu
tion Life is just a long random walk.Devroye, Gy�or�, Lugosi.A Probabilisti
 Theory of Pattern Re
ognition, 1996.Life is just a long random walk. And being the ones walking we would naturally like topredi
t the future of this walk. But most times the only information we have about the futureis the past we already saw and the hoped-to-be-right belief that future will behave like the pastin the meaning that similar situations will result in similar development. The last assumptionis based on our past experien
e that physi
al laws are time and spa
e invariant.Learning theory deals with the question of predi
ting the (results of) future events given the(results of) past events and sometimes some additional observations related to the future. The�rst signi�
ant results in formal de�nition and exploration of this question were obtained in the1920's - 1930's by [Fis22, Fis25, Gli33, Can33, Kol33℄. Though the �eld formed as a separate�eld of studies only in the 1970's - 1980's with the works of [VC71, VC81, Val84℄. In general,the learning theory may be seen as an interse
tion of statisti
s with the 
omputational theory.One may also �nd deep 
onne
tions of the learning theory to the information theory; some ofthem will be dis
ussed here.The question of predi
ting the future events based on the results of the past events is knownas the question of statisti
al inferen
e. The simplest model of statisti
al inferen
e is patternre
ognition problem. Pattern re
ognition deals with estimation of f0,1g-valued fun
tions. Thisproblem is dis
ussed in depth in [DH73, Bis95, DGL96, Vap98℄ and many other books. Some-times, espe
ially when the investigated fun
tion takes more than two, but �nite number ofpossible values, the problem is also 
alled 
lassi�
ation (the value of the fun
tion is the index ofthe 
lass its argument belongs to). A more general and hard problem of estimating real-valuedfun
tions is known as a problem of regression estimation, dis
ussed in [Vap98, Bis95℄. In both
ases the input we get is a set of hx; f(x)i pairs where x belongs to some spa
e we are samplingfrom and f(x) is the value of the investigated fun
tion at x. This set of pairs is 
alled our past,history or training sample. The \future" we want to predi
t is the value of f at some new pointx we have not seen yet. In a slightly di�erent formulation, x may 
ome from some probabilityspa
e X , and f may be a probability density fun
tion over X . Then our sample will be just aset of points sampled from X a

ording to f , and we will have to estimate f over whole X . Inthis setting the problem is 
alled density estimation problem (see [Vap98, Bis95℄).3



4 Chapter 1: Introdu
tionA more general setting of the density estimation problem is when x-es are drawn a

ordingto multiple distributions f1; ::; fk, when the generating distribution is 
hosen randomly beforeea
h trial or sequen
e of trials. If in addition to learning the resulting mixture distribution wetry to learn ea
h fj in parti
ular, the problem is known as a problem of unsupervised learning(unsupervised sin
e we do not get the 
orresponden
e between the data points and their gen-erating distributions expli
itly in our input). When our primary interest fo
uses on �nding the
orresponden
es between the data points and the sour
es (f1; ::; fk) that most likely generatedthem, the problem is also known as unsupervised 
lassi�
ation or 
lustering of the data (herethe 
lass of a point is the index of the distribution fun
tion it was most likely sampled from).The problem of unsupervised learning was deeply studied for the 
ase of independent randomvariables in <n (points) - see [DHS01℄ and [Ros98℄ for an overview. Though little work was donefor the 
ase of dependent variables and sequen
es in parti
ular (see [FR95℄).At the same time segmentation of sequen
es has be
ome a fundamental problem with manyimportant appli
ations su
h as analysis of texts, handwriting and spee
h, neural spike trains andbio-mole
ular sequen
es. The most 
ommon statisti
al approa
h to this problem, using hiddenMarkov models (HMM), was originally developed for the analysis of spee
h signals, but be
amethe method of 
hoi
e for statisti
al segmentation of most natural sequen
es (see [Rab86℄). HMMsare prede�ned parametri
 models - their ar
hite
ture and topology are predetermined and thememory is limited to �rst order in most 
ommon appli
ations. The su

ess of HMMs thus
ru
ially depends on the 
orre
t 
hoi
e of the state model. It is rather diÆ
ult to generalizethese models to hierar
hi
al stru
tures with unknown a-priory state topology (see [FST98℄ foran attempt).An interesting alternative to the HMM was proposed in [RST96℄ in the form of a sub 
lass ofprobabilisti
 �nite automata, the variable memory Markov (VMM) sour
es. These models haveseveral important advantages over the HMMs:1. They 
apture longer 
orrelations and higher order statisti
s of the sequen
e.2. They 
an be learned in a provably optimal PAC like sense using a 
onstru
tion 
alledpredi
tion suÆx tree (PST) [RST96℄.3. They 
an be learned eÆ
iently by linear time algorithm [AB00℄.4. Their topology and 
omplexity are determined by the data.In this work we des
ribe a powerful extension of the VMM model and the PST algorithm toa sto
hasti
 mixture of su
h models, suggested in [SBT01b℄ and present a detailed analysis of thealgorithm. The problem we are trying to solve is: given a string �x = x1::xn that was generated byrepeatedly swit
hing between a number of unknown VMM sour
es (with some upper bound onthe alternation rate), �nd the most likely number of sour
es that parti
ipated in the generationof �x and the most probable segmentation of �x into segments, generated by ea
h of the sour
es.The problem is generally 
omputationally hard, similarly to data 
lustering. Only very simplesequen
es 
an be segmented both 
orre
tly and eÆ
iently in general (see [FR95, Hof97℄).We approa
h this problem with hierar
hi
al top-down 
lustering pro
edure. Our approa
his information theoreti
 in nature. The goal is to enable short des
ription of the data by a (soft)mixture of VMM models, ea
h one 
ontrolled by an MDL prin
iple (see [BRY98℄ for a review).The last is done by modifying the original PST algorithm using the MDL formulation, while



Chapter 1: Introdu
tion 5preserving its good learnability properties. The mixture model is then learned via a generalizedrate distortion theory approa
h (see [CT91, Ch. 13℄). Here we take the log-likelihood of the databy ea
h model as an e�e
tive distortion measure between the sequen
e and its representativemodel and apply the Blahut-Arimoto (BA) algorithm (see [CT91℄) to optimally partition thesequen
e(s) between the VMM model 
entroids. Just like in many 
lustering algorithms we thenupdate the models based on this optimal partition of the sequen
e(s). In this way a naturalresolution parameter is introdu
ed through the 
onstraint on the expe
ted tolerated distortion.This \temperature" like Lagrange multiplier is further used in the deterministi
 annealing loop(see [Ros98℄) to 
ontrol the resolution of the model. The hierar
hi
al stru
ture is obtained byallowing the models to split (the re�nement step) after 
onvergen
e of the iterations betweenthe BA algorithm and the VMM 
entroids update. Our model 
an in fa
t be viewed as an HMMwith a VMM atta
hed to ea
h state, but the learning algorithm allows a 
ompletely adaptivestru
ture and topology both for ea
h state and for the whole model.After des
ribing and analyzing the algorithm we demonstrate an interesting appli
ation of thealgorithm in the �eld of protein sequen
es 
lassi�
ation. This appli
ation was widely explored in[BSMT01℄, whi
h was a natural 
ontinuation of the [BY01℄ work, where PSTs were shown to bea powerful tool for supervised 
lassi�
ation of proteins. The 
urrent work extends our abilitiesby allowing to perform this task in unsupervised manner. Chara
terization of a protein sequen
eby its distin
t domains (autonomi
 stru
tural subunits) is 
ru
ial for 
orre
t 
lassi�
ation andfun
tional annotation of newly dis
overed proteins. Many families of proteins that share a
ommon domain 
ontain instan
es of several other domains without any 
ommon ordering, norwith mandatory presen
e of the additional domains. Therefore, 
onventional multiple sequen
ealignment (MSA) methods (that attempt to align the 
omplete sequen
e, see [DEKM98℄) �nddiÆ
ulties when fa
ed with heterogeneous groups of proteins. Their su

ess 
ru
ially dependson the initial (seed) sele
tion of a group of related proteins, usually hand 
rafted by experts.Even in the 
ases when similarities are dete
ted in an automati
 way using bottom-up 
lusteringte
hniques [Yon99℄, the system la
ks the global pi
ture view. The advantage of our algorithm isthat it does not attempt any alignment, but rather 
lusters together short regions with similarstatisti
s. As a result it does not require any initial sele
tion of a group of related proteins, and itis not 
onfused by di�erent orderings of the domains in the protein sequen
es. The 
lassi�
ationis done through revelation of domain signatures - short, highly 
onserved domain subsegments
ommon to at least small amount of the input proteins.The 
ontinuation of the work is built in the following way. In Ch. 2 we give some basi
sfrom the probability, information and learning theories, essential for understanding of our work.In Ch. 3 we de�ne variable memory Markov (VMM) pro
esses. We then review the algorithmsof [WST95℄ and [RST96℄ for learning of VMM sour
es and des
ribe the new algorithm from[SBT01b℄ that approa
hes this task basing on the MDL prin
iple. Ch. 4 gives an introdu
tionto the �eld of unsupervised learning of mixture distributions and reviews some 
lustering algo-rithms. In Ch. 5 we des
ribe the new algorithm for unsupervised sequen
e segmentation from[SBT01b℄. The algorithm embeds the VMM sequen
e modelling des
ribed in Ch. 3 into hier-ar
hi
al 
lustering framework des
ribed in Ch. 4. We also hold a short dis
ussion of the mainpoints of the algorithm at the end of Ch. 5. Ch. 6 demonstrates two interesting appli
ations ofthe algorithm. The �rst one is unsupervised segmentation of multilingual texts into languages.Here the algorithm was able to infer 
orre
tly both the number of languages used and the lan-guage swit
hing points with a pre
ision of a few letters. We also try to sense the limitations of



6 Chapter 1: Introdu
tionthe algorithm on this example in the notion of maximal swit
hing rate it is able to dete
t andminimal amount of data it needs. The se
ond appli
ation shown is unsupervised 
lassi�
ationof protein sequen
es. Here the algorithm was able to re�ne the HMM superfamily 
lassi�
ationand to identify domains that appeared in a very small amount of the input proteins. The se
-tion in
ludes the results of [SBT01b, BSMT01, SBT01a℄ works, as well as some new results �rstpresented here (mainly the analysis of the abilities of the algorithm) and some results that didnot enter our previous papers due to spa
e limitations. Ch. 7 holds a dis
ussion of the algorithmand the results and gives a number of suggestions for further work.



Chapter 2Preliminaries2.1 Essential Con
epts from the Probability TheoryIn this se
tion we are going to give a number of essential de�nitions from the probability theory.Conditional Probability and Bayes FormulaConditional probability is one of the most basi
 instruments in the probability theory and willbe extensively used in this work. We start with an illustrative example and then will give aformal de�nition.Suppose that we have a population of N people - NM men and NW women. And supposethat NR out of them have read this work. We denote byM , W and R the events that a person isa man, a woman and has read this work respe
tively. Then (see [Fel71℄) P (M) = NMN ; P (W ) =NWN and P (R) = NRR . Now we 
an 
on
entrate on the subset of our population 
ontaining womenonly and ask, what is the probability that a randomly 
hosen women has read this work. Wedenote the probability of this event by P (RjW ), whi
h 
an be read as: \the probability of eventR 
onditioned on event W" or \the probability of (event) R given (event) W". If NWR is thenumber of women who has read this work, then:P (RjW ) = NWRNWon the other hand: NWRNW = NWRNNWN = P (W \R)P (W )whi
h means: P (RjW ) = P (W \R)P (W )(Later we will also use a notation P (W;R) for the probability of the interse
tion of the eventsW and R.)This brings us to the following de�nition: 7



8 Chapter 2: PreliminariesDe�nition 2.1 Let H be an event with positive probability. Then for every event A we write:P (AjH) = P (A \H)P (H) (2.1)Note, that working with 
onditional probabilities for a given �xed event H is equivalentto 
hoosing H as our new spa
e of elementary events with probabilities proportional to theoriginal ones - P (H) plays here the role of normalization 
oeÆ
ient. This means that all thebasi
 theorems on probabilities are valid for 
onditional probabilities as well. For example:P (A [BjH) = P (AjH) + P (BjH)� P (A \BjH).(2.1) may be rewritten in the form:P (A \B) = P (AjB) � P (B) (2.2)This may be generalized for a sequen
e of events A1; ::; An:P (A1 \ :: \An) = P ((A1 \ :: \An�1) \An) (2.3)= P (A1 \ :: \An�1jAn) � P (An) = :::= P (A1jA2 \ :: \An) � P (A2jA3 \ :: \An) � :: � P (An�1jAn) � P (An)Su
h 
hain de
omposition of the probability will be very useful when we get to the Markovpro
esses.Now we give one more de�nition that will be used in this 
hapter:De�nition 2.2 Two random variables A and B will be 
alled independent, if P (AjB) = P (A).Note, that if P (AjB) = P (A), then P (BjA) = P (A\B)P (A) = P (B)�P (AjB)P (A) = P (B)�P (A)P (A) = P (B).Now let us take a set of non-interse
ting events H1; ::;Hn, su
h that Sni=1Hi 
overs thewhole probability spa
e. This means that every event belongs to a single Hi out of H1; ::;Hn.In this 
ase, for any event A, A = Sni=1(A \ Hi). Using the fa
t that for i 6= j we haveP ((A \Hi) \ (A \Hj)) = 0 due to the emptiness of the interse
tion of Hi with Hj we get:P (A) = P ([(A \Hi)) =XP (A \Hi) =XP (AjHi) � P (Hi) (2.4)From here we straightly get the Bayes formula:P (HjjA) = P (A \Hj)P (A) = P (AjHj) � P (Hj)Pi P (AjHi) � P (Hi) (2.5)If fHig is our hypothesis set, then P (Hi) is 
alled the prior probability distribution over thehypothesizes and P (HijA) is 
alled the posterior distribution over the hypothesizes - after weknow that A has happened.Note, that if Hi-s are the states of our world, and A is some observation we have done, thenwe 
an infer some information about the state of the world we are 
urrently in. For example, wehave two unfair 
oins: C1 has a greater probability for \head" and C2 has a greater probabilityfor \tail". Suppose that we have 
hosen one out of the two 
oins a

ording to some priordistribution P (Ci) and made a trial. Then a

ording to the result we got, we 
an tell what isthe posterior probability that we have 
hosen Ci.



Chapter 2: Preliminaries 9Probability DensityWhen talking about 
ontinuous variables one should 
onsider probability density fun
tions. Aprobability density fun
tion p(x) spe
i�es that the probability of the random variable X 2 Xlying in the region R � X is given by:P (X 2 R) = ZR p(x)dx(2.1) may be generalized for the density fun
tions. Let p(x; y) be the joint probability densityfun
tion of two random variables X 2 X and Y 2 Y:P ((X 2 RX) ^ (Y 2 RY )) = RRX ;RY p(x; y)dxdy. And let p(y) be the marginal density fun
tionof Y : p(y) = RX p(x; y)dx. Then denoting by fy(X) the probability density of the randomvariable fXjY = yg, we get: fy(X) = p(X; y)p(y)See [Fel71℄ for a proof.Conditional Expe
tationNow we add a notion of 
onditional expe
tation.De�nition 2.3 Conditional Expe
tation E(Y jX = x) is de�ned as:E(Y jX = x) = Xy2Y yp(yjx)We write E(Y jX) when we talk about the 
onditional expe
tation as a fun
tion of X, andE(Y jx) when we talk about its value at spe
i�
 point x. Note, that when we talk about
onditional expe
tation we assume an existen
e of the joint probability distribution p(x; y).Jensen's InequalityTheorem 2.1 (Jensen's inequality): If f is a 
onvex fun
tion and X is a random variable,then: Ef(X) � f(EX)Moreover, if f is stri
tly 
onvex, then equality implies that X = EX with probability 1, i.e. Xis a 
onstant.See [CT91, page 25℄ for a proof.2.2 Information TheoryInformation Theory originated from the Communi
ation Theory in the early 1940's and initiallydealt with the questions of data 
ompression and transmission. The �rst and most importantresults are due to Shanon, who a
tually founded this �eld of studies ([Sha48℄ and later works).Though being still asso
iated with Communi
ation Theory, Information Theory proved to have



10 Chapter 2: Preliminariesimportant relations to other �elds of study, su
h as Thermodynami
s in Physi
s, KolmogorovComplexity in Computer S
ien
e, E
onomi
s, Probability Theory, Statisti
s and Ma
hine Learn-ing. Here we will fo
us on the last one, while all the rest, as well as a good referen
e to thewhole theory may be found in [CT91℄.One of the most basi
 quantities in the information theory is the entropy of a distribution:De�nition 2.4 The entropy H(X) of a dis
rete random variable X distributed a

ording to pis de�ned by: H(X) = �Xx2X p(x) log p(x) = E � log p(x) (2.6)We will also write H(p) for the above quantity. In this work we will only use binary entropy,i.e. the log in the de�nition of H is log2, also denoted as lg.Another important quantity we want to de�ne here is relative or 
ross entropy, also knownas Kullba
k-Leibler distan
e or divergen
e, suggested in [KL51℄:De�nition 2.5 The Kullba
k-Leibler distan
e between two probability distributions p(x) andq(x) is de�ned as: DKL(pkq) = Xx2X p(x) log p(x)q(x) = Ep log p(x)q(x) (2.7)In the above de�nition we use the 
onvention (based on 
ontinuity arguments) that 0 log 0q = 0and p log p0 =1. Note, that DKL is asymmetri
 (DKL(pkq) 6= DKL(qkp)) and does not satisfythe triangle inequality. A
tually, the only property of a metri
 it satis�es is positivity (see[CT91, page 26℄ for a proof):Theorem 2.2 (Information inequality): For probability distributions p and q, DKL(pkq) � 0with equality if and only if p(x) = q(x) for all x.Nonetheless, it is often useful to think of relative entropy as a \distan
e" between distri-butions for reasons that will be immediately shown after a sequen
e of de�nitions related to
oding:De�nition 2.6 A sour
e 
ode C for a random variable X is a mappingC : X ! f0; 1g�. C(x) denotes the 
odeword 
orresponding to x and lC (x) denotes the length ofC(x).The subs
ript C in lC (x) will be omitted wherever it will be 
lear whi
h 
ode C do we speakabout. In this work we will dial solely with binary 
odes.De�nition 2.7 The expe
ted 
ode length L(C) of a sour
e 
ode C is given by:L(C) = Xx2X p(x)l(x) (2.8)De�nition 2.8 Code C is 
alled uniquely de
odable if for every two sequen
es x1::xn; y1::ym 2X � su
h that x1::xn 6= y1::ym:C(x1::xn) = C(x1)::C(xn) 6= C(y1)::C(ym) = C(y1::ym).



Chapter 2: Preliminaries 11With above de�nitions it may be shown that (see [CT91℄ for a proof):Theorem 2.3 (M
Millan): The 
odeword lengths of any uniquely de
odable 
ode must satisfythe Kraft inequality: Xx2X 2�l(x) � 1If we try to minimize L(C) while 
onstrained by the Kraft inequality, we derive (using thete
hnique of Lagrange multipliers) that the optimal 
ode lengths l� should satisfy: l�(x) =� lg p(x). Whi
h implies: L(C) � L(C�) = �P p(x) lg p(x) = H(X), where C� stays for theoptimal 
ode. We dedu
ed that H(X) is the lower bound on the 
ode length of X. This isalso an a
hievable bound, and there are algorithms (like Hu�man 
ode) that a
hieve: H(X) �L(C) < H(X) + 1. All these 
odes satisfy: l(x) � d� lg p(x)e.Note, that if we 
onstru
t a 
ode C for X using a \wrong" distribution q 6= p, we get:L(C) = Eplq(x) = �XX p(x) lg q(x)= �XX p(x) lg p(x) +XX p(x) lg p(x)q(x) = H(p) +DKL(pkq)Thus DKL(pkq) is the penalty per symbol we will pay for 
hoosing a wrong distribution q whentrying to 
ode a sequen
e generated a

ording to p. This gives us the motivation for taking DKLas a measure of distan
e between distributions.Another information theoreti
 quantity we want to de�ne here is mutual information:De�nition 2.9 For two random variables X and Y with joint probability distribution p(x; y)and marginal distributions p(x) and p(y) the mutual information I(X;Y ) is the relative entropybetween the joint and the produ
t distribution p(x)p(y):I(X;Y ) = Xx2X ;y2Y p(x; y) log p(x; y)p(x)p(y)= DKL(p(x; y)kp(x)p(y))We add a de�nition of 
onditional entropy :De�nition 2.10 For two dis
rete random variables X and Y with a joint distribution p(x; y)the 
onditional entropy H(Y jX) is de�ned as:H(Y jX) = Xx2X p(x)H(Y jx)= �Xx2X p(x)Xy2Y p(yjx) log p(yjx)



12 Chapter 2: PreliminariesWith this de�nition we note that:I(X;Y ) =Xx;y p(x; y) log p(x; y)p(x)p(y)=Xx;y p(x)p(yjx) log p(yjx)p(x)= �Xx p(x) log p(x) +Xx p(x)Xy p(yjx) log p(yjx)= H(X)�H(XjY )Thus the mutual information I(X;Y ) is the redu
tion in the un
ertainty of X due to theknowledge of Y .2.3 Probability Density EstimationOne of the main problems the learning theory deals with and that will be tou
hed in thiswork is the problem of probability density estimation. The usual setting for this problem is:given a �nite sample x = x1; ::; xn of independent samples generated by unknown probabilitydistribution (sour
e) p(x), try to estimate p(x) for the whole probability spa
e X .There are three major approa
hes to the density estimation problem. The parametri
 meth-ods, in whi
h a spe
i�
 fun
tional form for the density model is assumed, i.e. p(x) = f�(x),where f is some fun
tion and � is its parameters ve
tor belonging to a parameters spa
e �. Forexample, for a normal distribution � = (�; �) 2 <�<+ = �. The drawba
k of this approa
h isthat the parti
ular form of parametri
 fun
tion 
hosen might be in
apable of providing a goodrepresentation of the true density. A di�erent approa
h is non-parametri
 estimation whi
h doesnot assume a parti
ular form, but allows the form of the density to be determined entirely bythe data. Su
h methods typi
ally su�er from the problem that the number of parameters inthe model grows with the data set, so that the model 
an qui
kly be
ome unwieldy. The thirdapproa
h, sometimes 
alled semi-parametri
 estimation, tries to a
hieve the best of both worldsby allowing a very general 
lass of fun
tional forms in whi
h the number of parameters 
an bein
reased in a systemati
 way to build even more 
exible models, but where the total numberof parameters 
an be varied independently from the size of the data set. For example, the PSTmodel in Se
. 3.2.1 is a semi-parametri
 one.2.3.1 Maximum LikelihoodBeing the most straightforward approa
h to the density estimation, the parametri
 methodassumes that the unknown probability density may be represented in terms of spe
i�
 fun
tionalform whi
h 
ontains a number of adjustable parameters. Namely, we think about some fun
tionf(x; �) su
h that for ea
h �xed �, f�(x) represents a probability distribution, and then we say thatp(xj�) = f�(x), where � is the set of (unknown) parameters. There are two prin
ipal te
hniquesfor determining the unknown parameters � of the distribution given a sample x of independentsamples generated a

ording to p(xj�). The �rst one, maximum likelihood is dis
ussed here.



Chapter 2: Preliminaries 13To be able to talk about maximum likelihood we de�ne the likelihood of a sample x under�xed parameters set � (and a �xed model f we are investigating):L(x) = L(x1; ::; xnj�) = P (x1; ::; xnj�) = nYi=1 p(xij�)The last equality holds be
ause x1; ::; xn are generated independently by f�(x) and are thereforeindependent given �.The maximum likelihood te
hnique just 
hooses �ML = argmax�L(x) to be the estimationof the unknown distribution parameter �. In words, the most probable parameter � that wasinvolved in generation of the observed sample is the one that maximizes the likelihood of thesample.2.3.2 Bayesian Inferen
eNow we turn to des
ribe the se
ond te
hnique for parameter estimation, named Bayesian In-feren
e. We note, that if we 
hoose p(�) to be our prior distribution over the parameters spa
e�, then p(x; �) = p(�)p(xj�) is a legal probability distribution over the X n � � spa
e. p(�)represents our un
ertainty in the values of the unknown parameters �. Before we see a newsample x, its prior probability in our model is (due to 
ontinuous version of (2.4)):p(x) = Z� p(xj�) � p(�)d�After we saw the sample our posterior distribution over the parameters p(�jx) be
omes (by
ontinuous version of (2.5)): P (�jx) = p(�) � p(xj�)p(x)Unlike maximum likelihood, whi
h gives us a spe
i�
 value of �, Bayesian inferen
e providesus with a posterior distribution over the parameters spa
e �. This distribution may be thenused to predi
t new samples. By (2.4) we have:p(Xjx) = Z� p(Xj�;x) � p(�jx)d� = Z� p(Xj�) � p(�jx)d�Where the se
ond equality holds due to independen
e of X and x given �.2.3.3 Probably Approximately Corre
t Learning ModelBeing probably the most natural learning approa
h, Bayesian inferen
e does not provide us (atleast dire
tly) with any guaranties on the quality of the answer we found. I.e. we know thatwe found the most likely approximation of the unknown parameter �, but we have no idea ofhow far we are from the a
tual value of � that generated the sample. Probably ApproximatelyCorre
t (PAC) model takes this question as a starting point.PAC learning model was suggested by Valiant in [Val84℄. The idea of PAC is to �nd thehypothesis that with high probability will not be too far from the target one. In our 
ontext ofprobability density estimation we will be mainly 
on
erned with the Kullba
k-Leibler distan
ebetween distributions. We will say that:



14 Chapter 2: PreliminariesDe�nition 2.11 A family P of probability distributions over X is PAC-learnable, if there existsan algorithm A that for every unknown distribution p 2 P, given a suÆ
ient, but at mostpolynomial in 1� and 1Æ , amount of samples generated a

ording to p, provides a hypothesis q thatsatis�es: P (DKL(pkq) > �) < Æ.We leave A the possibility to err 
ompletely with probability at most Æ sin
e the samplegenerated by p may appear to be untypi
al to p. For example, a fair 
oin may, though withsmall probability, o

asionally generate a long sequen
e of \all ones".Main results on the possibility of PAC learning are based on Glivenko-Cantelly theorem onthe 
onvergen
e of empiri
al distributions to the a
tual distribution fun
tion [Gli33, Can33℄. Thesample eÆ
ien
y of the learning pro
edure (in appropriate 
ases) is based on Kolmogorov's workon the rate of that 
onvergen
e [Kol33℄ and Cherno� and Hoe�ding inequalities [Che52, Hoe63℄.The ne
essary and suÆ
ient 
onditions for PAC learning are based on the work of Vapnik andChervonenkis [VC71, VC81℄. A mu
h more detailed dis
ussion of PAC may be found in [KV94℄or [Vap98℄.2.3.4 Minimum Des
ription Length Prin
ipleIn Se
. 2.2 we saw that the optimal 
ode length mimi
s data generating distribution; namelyl(x) = � lg p(x). Though, if we were wishing to transmit a sequen
e x1; ::; xn we would have tospe
ify whi
h 
ode C we are using as well. Thus the total number of bits we transmit would be:l(C) + nXi=1 lC (xi) (2.9)where l(C) stays for the length of spe
i�
ation of C.Note, that if we 
hoose C out of a large family of 
odes C, then we 
an �nd C built on theunderlying distribution qC whi
h will be very 
lose to the data generating distribution p. In su
h
ase, we will pay low penalty nDKL(pkq) for not being absolutely exa
t in our estimation of p,but the spe
i�
ation of C will be rather long (if there is an equal probability for 
hoosing anyC 2 C, the spe
i�
ation of C will take lg jCj bits). This would be espe
ially ineÆ
ient if we havesmall amount of data n. For hierar
hi
al families of distributions (when subsequent probabilitydensity fun
tions re�ne the partition of their \parents") it is possible that di�erent hypothesesqC will have di�erent spe
i�
ation lengths l(C); see Se
. 3.2.2 for su
h example.Minimum Des
ription Length prin
iple stays that the optimal hypothesis qC� is the one thatunderlies the 
ode C� that minimizes (2.9).It may be further shown that:1. If we use Bayesian inferen
e, then P (xn+1jx1; ::; xn) � P (xn+1jqC� ) up to o(1), thus MDLis a good approximation of the Bayesian inferen
e (see [BRY98℄).2. In PAC learning setting qC� minimizes the risk that the predi
tion will (signi�
antly)disagree with the a
tual pro
ess out
ome (see [Vap98℄ for a proof for pattern re
ognitionproblem).MDL approa
h has several advantages over the inferen
e s
hemes des
ribed previously. If
ompared to Bayesian inferen
e, MDL is a good approximation of Bayesian inferen
e, but at the



Chapter 2: Preliminaries 15same time MDL �nal hypotheses are usually mu
h more 
ompa
t than Bayesian ones. In addi-tion, MDL provides us with a single model and not a mixture of models, whi
h sometimes is alsoan advantage. If 
ompared to PAC learning setting, MDL suggests only a single parameter foroptimization - the des
ription length, that 
omes instead of � and Æ parameters of PAC learningalgorithms, and still it rea
hes the same goal - minimization of probability of error. ThereforeMDL is more suitable for unsupervised learning frameworks, where we want to minimize thenumber of parameters externally 
ontrolled by the user. MDL is also an ultimative tool forrevealing the a
tual data generating distribution p sin
e qC� 
onverges to p as the sample size ntends to in�nity.MDL prin
iple was suggested in the work of Rissanen [Ris78℄, though it should be noted thatvery similar ideas appeared also in pre
eding works, like [WB68℄. MDL prin
iple has very toughrelations to the Kolmogorov 
omplexity, de�ned in the works of Solomono� [Sol60℄, Kolmogorov[Kol65℄ and Chaitin [Cha66℄. A good referen
e to MDL prin
iple is [BRY98℄. [Vap98℄ suggestssome additional bounds from the risk minimization point of view.
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Chapter 3Markov Pro
esses and SequentialData Sour
esThis 
hapter is devoted to single sequential sour
e modeling. We start with de�nition of Markovand variable memory Markov (VMM) pro
esses. Then we review some existing algorithms forlearning of VMM sour
es and �nish with detailed des
ription of the new VMM sour
e learningalgorithm from [SBT01b℄.3.1 Markov and Variable Memory Markov Pro
essesFor a sequen
e of random variables �X = X1::Xn we may use (2.3) to write the probability ofthe sequen
e in the following way:P ( �X) = nYi=1P (XijX1::Xi�1)In Ch. 2 we assumed that fXigni=1 are independent variables, i.e. P (XijX1; ::;Xi�1) = P (Xi).But in many 
ases this assumption appears to be too stri
t.The Markov assumption is less restri
tive (see [Fel71℄ for a deeper dis
ussion):De�nition 3.1 A sequen
e of random variables is said to form a Markov 
hain, ifP (XijX1; ::;Xi�1) = P (XijXi�1).Here Xi�1 represents the 
hain \memory", whi
h in the parti
ular 
ase of the de�nition is oflength 1. Alternatively, we may assume that P (XijX1; ::;Xi�1) = P (XijXi�r; ::;Xi�1), gettingmemory of length r. The problem is that for a sequen
e over an alphabet of size j�j and memoryof length r, the number of 
onditional distributions we will have to learn is j�jr, limiting us dueto sample size or spa
e 
onstrains to very short memory length, whi
h is not always suÆ
ientto 
apture all signi�
ant long-distan
e dependen
ies in the data. The key for su

ess of theVMMs lies in the observation that out of j�jr possible \memories" usually only few are likelyto frequently appear. For the rest we 
an su�er even a big mistake (loss) sin
e the number oftimes this will happen will be small.VMM sour
e may be represented using a tree of sele
ted suÆxes of the pre�xes fx1::xi�1gni=1.In [RST96℄ su
h tree is 
alled Predi
tion SuÆx Tree (PST). In [WST95℄ the string xi�r::xi�1 is
alled a 
ontext of xi, and the tree is 
alled Context-Tree. We will use the following de�nition:17



18 Chapter 3: Markov Pro
esses and Sequential Data Sour
esDe�nition 3.2 A Pre�x-SuÆx Tree T over a �nite alphabet � is a j�j-ary tree that satis�es:1. For ea
h node ea
h outgoing edge is labeled by a single symbol � 2 �, while there is atmost one edge labeled by ea
h symbol.2. Ea
h node of the tree is labeled by a unique string s (a 
ontext) that 
orresponds to a 'walk'starting from that node and ending in the root of the tree. We identify nodes with theirlabels and label the root node by the empty string �.See Fig. 3.1 for an illustration of su
h tree.De�nition 3.3 sufT (x1::xi�1) is de�ned to be the longest sequen
e xi�r::xi�1 that makes a pathin T in the following sense: we start from the root and traverse the edge labeled by xi�1, fromthere we traverse the edge labeled by xi�2 et
., until there is no appropriate edge to 
ontinuewith or we have traversed the whole string1. If there is no edge labeled by xi�1 leaving the rootwe say that sufT (x1::xi�1) = �.De�nition 3.4 A Variable Memory Markov (VMM) sour
e G is a sto
hasti
 pro
ess that sat-is�es: PG(xijx1::xi�1) = PG(xijsufT (x1::xi�1)) for some suÆx tree T . T will be 
alled a sup-porting tree of G.De�nition 3.5 The Minimal Supporting Tree (MST) of a VMM sour
e G is a supporting treeof G that satis�es: for all T 0 � T , T 0 is not a supporting tree of G2.Theorem 3.1 For ea
h VMM sour
e exists a unique MST.Proof 3.1 Let G be a VMM sour
e. Then, by de�nition, G has a supporting tree T . There isa �nite number of trees T 0 � T , thus a minimal one exists. It is left to show the uniqueness ofthe minimal tree. Suppose that T1 and T2 are two di�erent MSTs of G. Then:1. T1 \ T2 is a supporting tree of G, sin
e:( PG(xijx1::xi�1) = PG(xijsufT1(x1::xi�1))PG(xijx1::xi�1) = PG(xijsufT2(x1::xi�1))) PG(xijx1::xi�1) = PG(xijminfsufT1(x1::xi�1); sufT2(x1::xi�1)g)= PG(xijsufT1\T2(x1::xi�1))2. T1 \ T2 � T1 and T1 \ T2 � T2, 
ontradi
ting the minimality of both. 2In this work we assume that all sour
es are stationary and ergodi
 sin
e these two require-ments are essential for any learning be possible.1Note that we do not ne
essarily stop at a leaf.2T � T 0 if T may be obtained from T 0 by addition of nodes.



Chapter 3: Markov Pro
esses and Sequential Data Sour
es 19De�nition 3.6 A VMM pro
ess is 
alled stationary, if for ea
h i; j � 1,P (Xi = �jsufT (x1::xi�1)) = P (Xj = �jsufT (x1::xj�1))whenever sufT (x1::xi�1) = sufT (x1::xj�1).De�nition 3.7 A VMM pro
ess is 
alled ergodi
, if for ea
h pair of strings s; t, su
h thatP (X1::Xjsj = s) > 0, P (Xl::Xl+jsjjx1::xjtj = t) > 0 for some �nite l > jtj.
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(.05,.25,.4,.25,.05 )(.1,.1,.35,.35,.1)Figure 3.1: An example of a PST over the alphabet � = fa; b; k; l; rg. The ve
tor near ea
h nodeis the probability distribution for the next symbol. E.g., the probability to observe k after the substringbara, whose largest suÆx in the tree is ra, is P (kjbara) = Pra(k) = 0:4.A natural way to model VMM sour
e is a PST:De�nition 3.8 Predi
tion SuÆx Tree (PST) T is a Pre�x-SuÆx Tree with the following prop-erty:1. A probability distribution ve
tor over � is asso
iated with ea
h node s 2 T .Ps(�) � P (�js) is the probability that letter � will 
ome after a string s.See Fig. 3.1 for an illustration of PST.It may be shown that when Ps(�) is de�ned to be Ps(�) = the number of times �s o

urred in �xthe number of times s o

urred in �xfor some string �x and with proper handling of the end points of �x, the distributions Ps(�) satisfythe marginal 
ondition: Ps(�) = P�̂2� PT (�̂s)PT (s) P (�j�̂s), where PT (s) is as de�ned below and �̂sis a pre�x extension of s (see [RST96℄). This means that the 
omplete set of distributions Ps(�)is stationary.Predi
ting and Generating using PSTsHere we de�ne the probability measure that a PST T indu
es on the spa
e of all strings �x =x1::xn 2 �n, for any given n. Given a string �x 2 �n and a PST T the probability that �x wasgenerated by T is: PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)



20 Chapter 3: Markov Pro
esses and Sequential Data Sour
esWhen T is used as a generator, it generates a symbol xi a

ording to the distributionPsufT (x1::xi�1).3.2 Learning Variable Memory Markov Sour
esIn this se
tion we review the algorithms from [RST96℄ and [WST95℄ for VMM sour
e learningand then des
ribe the new algorithm from [SBT01b℄ that will be used in this work.3.2.1 PAC Learning of the VMM Sour
esIn [RST96℄ a PAC algorithm for VMM sour
e learning was proposed. The algorithm works inthe following way. As an input it gets a string �x (or a set of strings) generated by the exploredsour
e, pre
ision and 
on�den
e parameters �, Æ and maximal assumed depth of the MST of thegenerating sour
e L. For ea
h substring s of length jsj � L the empiri
al probability of s, ~P (s),is de�ned to be the number of times s appeared in �x divided by j�xj � L � 1 - the number oftimes s 
ould appear in �x. For ea
h letter � 2 � the empiri
al probability of � to 
ome after s,~Ps(�), is de�ned to be the number of times � appeared after s in �x divided by the number ofo

urren
es of s. The output of the algorithm is a PST that with probability of at least 1 � Æis �-
lose (in the DKL pseudo-metri
s) to the original sour
e. The �nal tree is a 
olle
tion of allnodes that satisfy:1. jsj � L2. ~P (s) is greater than some lower bound that is a fun
tion of �, Æ and j�j.3. For ea
h node �̂s there is � 2 � su
h that ~P (�j�̂s) di�ers signi�
antly from ~P (�js), orthere is a des
endant ŝ�̂s of �̂s for whi
h ~P (�jŝ�̂s) di�ers signi�
antly from ~P (�js). Thesigni�
an
e is a fun
tion of �, Æ and j�j.Smoothing of probability distributions in the nodes of the �nal tree T is done to avoid zeroprobabilities. The PAC property of the algorithm is proved in [RST96℄. A linear time and spa
ealgorithm to �nd T was proposed in [AB00℄.3.2.2 Bayesian Learning of the VMM Sour
esIn [WST95℄ a Bayesian approa
h to VMM sour
e learning was proposed. The input to thealgorithm is a binary string generated by the explored sour
e (generalization to �nite alphabetis dis
ussed elsewhere) and the assumed maximal depth L of the MST of that sour
e (thisassumption was eliminated in [Wil98℄). The output is a weighted 
ombination of all possible
ontext trees of depth not greater than L (over all possible trees in [Wil98℄).The prior probability of a tree T is inverse proportional to the exponent of the des
riptionlength of T . In their 
oding s
heme, [WST95℄ for ea
h node s of T 
ode the existen
e of sons ofs: for ea
h �̂ 2 � the bit of �̂ in s is 1, if �̂s 2 T and 0 otherwise3. Thus the des
ription lengthof the tree skeleton is j�j � jT j, where jT j is the number of nodes in T . For ea
h tree T and forea
h node s, ~Ps(�) is de�ned to be: ~Ps(�) = ~Ns(�)+ 12~N(s)+ 12 j�j , where ~N(s) is the empiri
al number of3s 2 T means that s is a node in T
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urren
es of s in �x, ~Ns(�) is the empiri
al number of times � appeared after s in �x and 12
omes from the usage of Kri
hevsky-Tro�mov (KT) estimators (see [KT81℄) whi
h ensure goodbounds on the distan
e between ~Ps(�) and the real distribution Ps(�) for small sample sizes.All the trees are stored in one 
omplete j�j-ary tree of depth L. An eÆ
ient pro
edure forsimultaneous update of ~Ps(�) for all the trees as well as an eÆ
ient pro
edure for weighting ofthe predi
tions of all the trees is des
ribed in [WST95℄. Both pro
edures run in time linear inL. It is shown in [Wil98℄ that when no assumptions on the tree depth are made (i.e. we use thealgorithm from [Wil98℄) or when L is greater or equal to the depth of the MST of the generatingpro
ess, the entropy H(PT (XijX1::Xi�1)) 
onverges to the entropy of the generating sour
e withprobability 1 as the sample size n tends to in�nity.3.2.3 MDL Learning of the VMM Sour
esNow we turn to des
ribe the new MDL driven algorithm for PST training from [SBT01b℄. Thealgorithm has the advantages of both PAC and Bayesian algorithms we have just des
ribed:1. The algorithm gets no parameters and thus perfe
tly suits for unsupervised learning thatwill be dis
ussed starting from the next 
hapter.2. The resulting (and intermediate) tree is very 
ompa
t. Thus it is very handful for workwith strings over large alphabets and in the 
ases when we have multiple models (seeCh. 5).In addition:3. Being built on MDL prin
iples, the algorithm reveals the most likely MST of the generatingpro
ess, whi
h may be interesting on its own.4. The algorithm was generalized to handle weighted data. This extension will be ne
essarywhen we will start working with multiple models, but it may be also useful for single modelsetting in the 
ases when we have di�erent levels of 
on�den
e in our input data.The inputs to the algorithm are a string �x = x1::xn and a ve
tor of weights �w = w1::wn,where ea
h wi is a weight asso
iated with xi (0 � wi � 1)4. We will denote w(xi) � wi. Youmay think of w(xi) as a measure of 
on�den
e we give to the observation xi. For now you mayassume all wi = 1 (this 
orresponds to the simple 
ounting setting we had in the previous twoalgorithms).For a string s we say that sxi 2 �x if sxi is a substring of �x ending at pla
e i. We de�ne:ws(�) � Xxi=� and sxi2�xw(xi)and w(s) � X�2�ws(�)4Generalization to a set of strings is straightforward and therefore omitted here for ease of notation. See[RST96℄ for an example of su
h generalization on the original algorithm.
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esses and Sequential Data Sour
esLearn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Re
ursively for ea
h s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)1. For ea
h � 2 � su
h that �s 2 T :(a) Prune(�s)(b) If TotalSize(T�s) > H(Ps) �w(�s) ThenDelete subtree T�sFigure 3.2: The PST learning algorithm.Clearly ws(�)w(s) is an empiri
al estimate for Ps(�). We smooth the probabilities by using theKT-estimators for the same reasons as in [WST95℄.As des
ribed in Ch. 2, the idea behind the MDL is to minimize the total length (in bits) ofmodel des
ription together with the 
ode length of the data when it is en
oded using the model.The 
oding of the tree skeleton takes j�j bits per node as in [WST95℄. In addition we should
ode the probability distribution ve
tors fPs(�)gs2T . Note, that the distribution ve
tor Ps isused to 
ode only those xi-s, for whi
h sufT (x1::xi) = s. Thus the total amount of data that is
oded using Ps is at most w(s), and exa
tly w(s) for the leaf nodes. In order to a
hieve minimaldes
ription length of the ve
tor Ps together with the fra
tion of the data that is 
oded usingPs the 
ounts ws(�) should be 
oded to within a

ura
y of pw(s) (see [BRY98℄). Ea
h node sholds j�j of su
h 
ounts, thus the des
ription size of s is:Size(s) = j�j+ j�j2 � lg(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)When 
oding data \passing through" node s 5:1. If sufT (x1::xi�1) ends with �̂s for �̂s =2 T , then xi is 
oded using Ps and the average 
odelength of xi is H(Ps). This will happen w(�̂s) times out of w(s) times we visit s.2. If �̂s is present in T , then xi is 
oded a

ording to distribution of some node in T�̂s, andthe average 
ode length will be the entropy of the distribution in that node. This will alsohappen w(�̂s)w(s) out of times we visit s.5sufT (x1::xi�1) ends with s



Chapter 3: Markov Pro
esses and Sequential Data Sour
es 23Thus the entropy of Ts satis�es the re
ursive de�nition:H(Ts) = X�̂s2T w(�̂s)w(s) �H(T�̂s) + X�s=2T w(�̂s)w(s) �H(Ps)And the 
ode length of data \passing through" s is w(s) �H(Ts).Summing this altogether we get the des
ription length:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whi
h is the total des
ription length of the whole treetogether with all 
oded data (as all data passes through the root node �). The algorithm worksin two steps (see Fig. 3.2):In step I we extend all the nodes that are potentially bene�
ial, i.e. by using them we mayde
rease the total size. Clearly only those nodes whose des
ription size is smaller than the 
odelength of data passing through them when that data is 
oded using the parent node distributionare of interest.In step II the tree is re
ursively pruned so that only truly bene�
ial nodes remain. If a 
hildsubtree T�s of some node s gives better 
ompression (respe
ting its own des
ription length) thanthat of its parent node, that subtree is left, otherwise it is pruned.
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Chapter 4Unsupervised Learning andClustering Algorithms4.1 Mixture ModelsUp to now we have talked about modeling and learning of single sour
e sour
es. Now we assumethat our sour
e G is a 
olle
tion of sour
es G1; ::; Gk. We also assume that G has a distributionP (Gj) over its sub-sour
es. The data points are generated by G in the following way: �rst we
hoose a sub-sour
e Gj a

ording to P (Gj) and then we let Gj to generate a new data point.The resulting mixture distribution is given by:p(x) = kXj=1P (Gj) � p(xjGj)In this 
hapter we are going to survey the existing methods for learning of mixture distributions.Learning of mixture distribution in
ludes:1. Inferring the number of mixture 
omponents k.2. Learning ea
h of the sour
es (�nding p(xjGj)).3. Learning the distribution over the sub-sour
es P (Gj).4. For ea
h data point determining, whi
h sub-sour
e has most probably generated it.A set of points that were generated by the same sub-sour
e will be 
alled a 
luster. Thus,the pro
edure of separation of x = x1; ::; xn into subsets that most probably emerged from thesame sub-sour
e is 
alled 
lustering.Note, that sometimes two di�erent mixtures may provide the same output distribution p(x).For example, for a mixture of two 
oins, where at ea
h step we randomly with probability(0:5; 0:5) 
hoose one 
oin, 
ip it and write down the result, the output distribution of a pair(mixture) f(0:4; 0:6); (0:6; 0:4)g and a pair f(0:3; 0:7); (0:7; 0:3)g will be the same. So, by lookingat the result we will not be able to distinguish between the two. This problem is 
alled uniden-ti�ability of a mixture (see [YS68, DHS01℄). While we will not enter into dis
ussion of this25



26 Chapter 4: Unsupervised Learning and Clustering Algorithmsquestion here, it should be mentioned that the algorithm des
ribed in Se
. 4.3 will return theminimal mixture that des
ribes the sample best as the most probable one, as will be des
ribedthere (e.g. in the given example it will be the mixture of one 
oin with (0:5; 0:5) distribution).4.2 Expe
tation MaximizationThe �rst pro
edure for learning of mixture distributions we are going to des
ribe here is the Ex-pe
tation Maximization (EM) algorithm, suggested in [DLR77℄ (see also [MK97℄ for an overview).EM is a general framework for learning from in
omplete data. In the 
ase of learning of mix-ture distributions, the in
omplete (or missing) data is the 
orresponden
e between the pointsx1; ::; xn and the sub-sour
es they emerged from. Given that 
orresponden
e we 
ould learn ea
hsour
e separately using some te
hnique from Ch. 2.The EM algorithm aims to �nd the mixture that will maximize the likelihood L(xj�) of thedata. � represents here the 
omplete set of parameters of the mixture. It should be noted, thatin most non-trivial 
ases EM is not guaranteed to �nd the global optimum, but only a lo
al one.In the 
ontext of 
lustering the EM algorithm works in the following way. It is assumedthat the number of mixture 
omponents k is known. We denote by fxi 2 Gjg the event thatxi was generated by the sub-sour
e Gj . The events fxi 2 Gjg are our hidden parameters. Themaximization of the likelihood of the observation L(xj�) is equivalent to maximization of thelog likelihood: logL(xj�) = log p(x1; ::; xnj�) = nXi=1 log p(xij�)The last equality follows from the independen
e assumption we return to in this 
hapter.In order to ease the notations we will talk about maximization of log p(xj�). The reader mayeasily see that the summation over i, Pni=1, may be added before ea
h term in the equations weare going to have here.We 
an write: p(x; x 2 Gj j�) = p(xj�) � p(x 2 Gj jx; �) (4.1)We add one more simpli�
ation and write: p(x 2 Gj jx; �) = p(Gj jx). (Conditioning on �, whilealways present, is omitted for better readability and the event fx 2 Gjg is written simply asGj .) By taking p(Gj jx) to the se
ond side of (4.1) and applying log we get:log p(xj�) = log p(x;Gj j�)� log p(Gj jx) (4.2)Note also, that p(x;Gj j�) = p(Gj j�) � p(xjGj ; �) = P (Gj) � p(xjGj) (4.3)We may always write:log p(xj�) = log p(xj�)Xj p(G0j jx) = Ep(G0j jx) log p(xj�)Applying the same to the se
ond side of (4.2) and substituting (4.3) we get:Ep(G0j jx) log p(xj�) = Ep(G0j jx) logP (Gj)p(xjGj)�Ep(G0j jx) log p(Gj jx)
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tation over some other mixture �0 with sub-sour
es G0j .If we have an algorithm to �nd �0 su
h thatEp(G0j jx) logP (G0j)p(xjG0j) � Ep(G0j jx) logP (Gj)p(xjGj) (4.4)then: log p(xj�0)� log p(xj�)= Ep(G0j jx) logP (G0j)p(xjG0j)�Ep(G0j jx) logP (Gj)p(xjGj)+Ep(G0j jx) log p(G0j jx)�Ep(G0j jx) log p(Gj jx)� DKL[p(G0j jx)kp(Gj jx)℄ � 0Indeed, the idea of EM is to start with some initial guess �0 and then iteratively �x �m and�nd �m+1 su
h that (4.4) holds when we think of �m as � and �m+1 as �0. Due to monotoni
in
rease of log p(xj�) the algorithm is ensured to 
onverge to some lo
al optimum.All we left to do is to de�ne p(Gj jx) in order to be able to 
ompute and maximizeEp(G0j jx) logP (G0j)p(xjG0j). There are a number of ways of de�ning p(Gj jx). Ifp(Gj jx) = ( 1 if 8j0 p(xjGj) � p(xjGj0)0 otherwisewe get the k-means 
lustering algorithm. And ifp(Gj jx) = P (Gj)p(xjGj)�Pj0 P (Gj0)p(xjGj0)�we get the fuzzy k-means 
lustering algorithm (see [DHS01℄). Note, that for � = 1 the abovede�nition 
oin
ides with the Bayesian de�nition of p(Gj jx).We will return to the question of de�nition of p(Gj jx) in the next se
tion.4.3 Clustering from the Information Theoreti
 Point of ViewThe drawba
k of the EM algorithm is that it \gets stu
k" in the �rst lo
al maximum, 
losestto the initial guess �0. It is 
ommon to run the EM multiple times with random initial startingpoints to 
ope with this problem, but this may still give little improvement for likelihood fun
-tions p(xj�) riddled with lo
al maxima (as a fun
tion of �). In addition, EM does not solve theproblem of determining the number of 
omponents in the generating mixture.What we would like to do is to work at in
reasing levels of resolution. When working atlow resolution we will look on a smoothed likelihood fun
tion that will have mu
h less lo
almaxima - hopefully just one. Finding this maximum (with EM-like pro
edure) will bring us tothe highest region of the likelihood fun
tion. By slowly in
reasing the resolution we will \getup" in that area and, with a bit of lu
k, get to the real optimum of the likelihood fun
tion. Of
ourse, we are not provided with any guarantees to �nd the global optimum, but many lo
aloptima will be automati
ally avoided, taking us to qualitatively new levels of solutions.In this se
tion we are primarily fo
using on the negative log likelihood fun
tion � log p(xj�).Note, that maximization of p(xj�) is equivalent to minimization of � log p(xj�). Fig. 4.1 shows
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Figure 4.1: Working at in
reasing levels of resolution - an illustrative example. Thebottom 
urve is the negative log likelihood fun
tion � log p(xj�) as a fun
tion of �. Curvesabove it are the negative log likelihood fun
tion at de
reasing levels of resolution (smoothing ofthe original one). The bold line is an imaginary sear
h path that starts at a random � at lowresolution and goes down the negative log likelihood fun
tion while in
reasing the resolution asit gets to a lo
al minima at the 
urrent level.an illustrative example of our attitude to minimization of � log p(xj�), and Fig. 4.2 gives anintuitive example of potential vulnerability of the method.In what is following we are going to des
ribe the deterministi
 annealing framework thatrealizes the des
ribed attitude to 
lustering. But before this we review some more basi
s fromthe Information Theory.4.3.1 Rate Distortion TheoryThe idea of rate distortion theory was introdu
ed by Shanon in his original paper [Sha48℄.Rate distortion theory deals with the question of optimal quantization of random variables.Unlike in Ch. 2 and 3, where we dealt with loss-less 
ompression, this time we are allowed to(slightly) distort the 
oded information in the meaning that the output of the de
oder may benot exa
tly the input of the en
oder. Therefore quantization is also 
alled lossy 
ompression.In this problem setting we have a ve
tor of independent identi
ally distributed (i.i.d) randomvariables x = x1; ::; xn 2 X n, generated by a sto
hasti
 sour
e. The goal is to 
ode (represent)the sequen
e with an estimate x̂ = x̂1; ::; x̂n 2 X̂ n that will optimize a 
ompound 
riterion onthe size of X̂ and the quality of subsequent de
oding of x̂ (or simply the distan
e between x and
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Figure 4.2: Working at in
reasing levels of resolution - potential vulnerability. Narrowdeep minima of the negative log likelihood fun
tion may be missed up when working at in
reasinglevels of resolution, as may be intuitively seen in this example.x̂). This 
riterion will be given immediately after a sequen
e of de�nitions that form the ratedistortion theory.De�nition 4.1 A distortion fun
tion or distortion measure is a mappingd : X �X̂ ! <+. The distortion d(x; x̂) is a measure of the 
ost of representing x 2 X by x̂ 2 X̂ .De�nition 4.2 The distortion between sequen
es x = x1; ::; xn and x̂ = x̂1; ::; x̂n is de�ned byd(x; x̂) = 1nPni=1 d(xi; x̂i).De�nition 4.3 A (2nR; n) rate distortion 
ode 
onsists of an en
oding fun
tionfn : X n ! f1; ::; 2nRgand a de
oding (reprodu
tion) fun
tiongn : f1; ::; 2nRg ! X̂ nThe distortion asso
iated with (2nR; n) 
ode is de�ned as:D = Ep(X)d(X; gn(fn(X)))



30 Chapter 4: Unsupervised Learning and Clustering AlgorithmsDe�nition 4.4 A rate distortion pair (R;D) is said to be a
hievable if there exists a sequen
eof (2nR; n) rate distortion 
odes (fn; gn) withlimn!1Ep(X)d(X; gn(fn(X))) � D.De�nition 4.5 The rate distortion region for a sour
e is the 
losure of the set of a
hievablerate distortion pairs (R;D).De�nition 4.6 The rate distortion fun
tion R(D) is the in�mum of rates R su
h that (R;D)is in the rate distortion region of the sour
e for a given distortion D.We also de�ne: hdi = Xx2X ;x̂2X̂ p(x)p(x̂jx)d(x; x̂)In [CT91℄ you may �nd a proof that:R(D) = minp(x̂jx):hdi�D I(X; X̂) (4.5)Here X̂ is �xed. The equation says that the optimal assignment probabilities p(x̂jx) are thosethat minimize the mutual information between x and x̂, while keeping on the desired level ofdistortion. Su
h assignment satis�es the distortion 
onstraint on p(x̂jx), but makes no otherassumptions (or 
onstrains) on the relation between x and x̂, and thus it is the most probableone.The optimal assignment probabilities may be found with the Blahut-Arimoto (BA) alternat-ing minimization pro
edure. The pro
edure starts with an initial guess of p(x̂) and � and theniteratively repeats the 
al
ulations:p(x̂jx) = p(x̂)e��d(x;x̂)Px̂0 p(x̂0)e��d(x;x̂0) (4.6)p(x̂) = Xx2X p(x)p(x̂jx) (4.7)until their 
onvergen
e.This algorithm was suggested by Blahut [Bla72℄ and Arimoto [Ari72℄ and proved to 
onvergeto the rate distortion fun
tion by Csiszar [Csi74℄. The distortion 
onstraint D is repla
ed inthe 
al
ulations by 
orresponding Lagrange multiplier �. By 
hoosing � appropriately we 
answeep out the R(D) 
urve. See [CT91, Ch. 13℄ for a more detailed dis
ussion of the algorithmand the theory in whole.4.3.2 Rate Distortion and ClusteringNote, that what we have just done was a partition of X into jX̂ j 
lusters with \soft" assignmentof ea
h point x 2 X to ea
h 
luster x̂ 2 X̂ : p(x̂jx) = p(x 2 x̂). The Lagrange multiplier �plays the role of resolution parameter - for small � the a
tual distan
e d(x; x̂) has low in
uen
eon p(x̂jx), while for � tending to in�nity we 
onverge to the hard partition of the data, the so
alled \winner takes all" (see de�nition of the assignment probabilities in (4.6)).



Chapter 4: Unsupervised Learning and Clustering Algorithms 31Also, note that X̂ need not ne
essarily be a subspa
e of X . We may take X̂ to be a set ofdata generating models over X , and de�ne d(x; x̂) to be � log px̂(x). For example, if we workwith points in <n, X̂ may be a 
olle
tion of Gaussians. The reason for taking � log px̂(x) as ourdistan
e measure is that if we measure a distan
e of a set of i.i.d. data points from a sour
e, wewill get: d(x1; ::; xn; x̂) = � log px̂(x1; ::; xn) = � logQi px̂(xi) = Pi� log px̂(xi) = Pi d(xi; x̂i).I.e. the distan
es are summing up as we would like them to behave.Now assume that we have an algorithm to �nd the most likely model for a weighted dataset. The algorithm �nds: x̂� = argminx̂0 Xi p(x̂jxi)d(xi; x̂0)where p(x̂jxi) are the weights. (Put attention that the weighting is over �xed weights p(x̂jxi),and that learning pro
edure returns a new model x̂�.) Then for our distan
e measure:x̂� = argminx̂0 Xi p(x̂jxi)d(xi; x̂0) = argminx̂0 Xi p(x̂jxi) � (� log p(xijx̂0))= argmaxx̂0 Xi p(x̂jxi) log p(xijx̂0)Whi
h gives us an inequality:Xi p(x̂jxi) log p(xijx̂�) �Xi p(x̂jxi) log p(xjx̂) (4.8)Re
alling from the previous se
tion that: log p(xj�) = log p(x̂)p(xjx̂) � log p(x̂jx) = log p(x̂) +log p(xjx̂)� log p(x̂jx), and observing that at this point p(x̂�) = p(x̂) we get:Xi [log p(xij��)� log p(xij�)℄=Xi [log p(x̂�) + log p(xijx̂�)� log p(x̂�jxi)� log p(x̂)� log p(xijx̂) + log p(x̂jxi)℄=Xi X̂x [p(x̂jxi)(log p(xijx̂�)� log p(xijx̂)) + p(x̂jxi)(log p(x̂jxi)� log p(x̂�jxi))℄= X̂x [Xi p(x̂jxi)(log p(xijx̂�)� log p(xijx̂))℄ +Xi DKL[p(x̂jxi)kp(x̂�jxi)℄ � 0Thus we have proved a monotoni
 in
rease in the likelihood fun
tion. This means that if westart from some initial guess of fx̂jg and iteratively �x the set we have and �nd a new set fx̂�jgthat will satisfy (4.8) we will 
onverge to some lo
al optimum of the likelihood fun
tion, likein EM. The essen
e of rate distortion based 
lustering is that we do not try to �nd the mostlikely model for the data, but rather optimize the rate distortion fun
tion, while this time weare allowed to manipulate not only with the assignment probabilities p(x̂jx), but also with themodels (or 
entroids) x̂ themselves. This way the expression we try to optimize is:minfx̂g;p(x̂jx):hdi�D I(X; X̂ )whi
h makes us to de�ne the assignment probabilities p(x̂jx) by (4.6).



32 Chapter 4: Unsupervised Learning and Clustering AlgorithmsThere is one important point in rate distortion based 
lustering we want to mention here.For ea
h level of distortion D there is a �nite number of models K(D) that are required in orderto des
ribe x at distortion not greater than D. (De�nitely K(D) � n, where n is the size of oursample.) If we start our 
lustering pro
edure with k > K(D) models, at the end of the 
lusteringwith high probability some of the models will unite together (
oin
ide) or remain with no data(no data points will be assigned to those models), leaving us with K(D) \e�e
tive" - distin
tand non-empty models. This happens due to the following reason. Our optimization goal maybe written as:R(D) = minx̂;p(x̂jx):hdi�D I(X; X̂) = minH(X) �H(XjX̂) = H(X)�maxH(XjX̂)= H(X) �max Xx2X ;x̂2X̂ �p(xjx̂) log p(xjx̂) = H(X) + minXx;x̂ p(xjx̂) log p(xjx̂)Due to the 
on
avity of the � log� fun
tion by Jensen inequality:(p(xjx̂1) + p(xjx̂2)) log(p(xjx̂1) + p(xjx̂2)) � p(xjx̂1) log p(xjx̂1) + p(xjx̂2) log p(xjx̂2)And equality holds i� p(xjx̂1) = p(xjx̂2) or one of p(xjx̂1); p(xjx̂2) is zero. Thus, uni�
ation orelimination of 
lusters (x̂1 and x̂2) redu
es the mutual information I(X; X̂) making solutionswith lower number of distin
t 
lusters more preferable whenever those solutions a
hieve therequired level of distortion. A more detailed dis
ussion of this phenomenon may be found in[Ros98℄.4.3.3 Hierar
hi
al Clustering through Deterministi
 AnnealingDeterministi
 annealing (DA) is a general framework that enables 
lustering at in
reasing levelsof resolution as was des
ribed at the beginning of this se
tion. DA does not require informationabout the number of models in a mixture, but rather �nds the most likely one, thus solving theproblem we 
ould not solve with regular EM. DA tea
hes us to a
t in the following way.We start with low initial value of the resolution parameter � and train a single model usingall the data we have. Note, that low value of � 
orresponds to high level of permitted distortionD, thus for � small enough one 
luster will suÆ
e to des
ribe x at the required level of distortion.Then we 
reate two 
opies of our model and perform random, usually asymmetri
, pertur-bations on ea
h of the 
opies. We will 
all this operation split.With the two models we got after split we run the rate distortion based 
lustering as des
ribedin the previous subse
tion. As mentioned there, at the end of the 
lustering we may remainwith two di�erent, two identi
al or one empty and one \full" models.The last two 
ases mean that we have rea
hed the essential number of models, required todes
ribe x at the 
urrent level of distortion D(�), and there is nothing to further look for at the
urrent value of �. Therefore we unite all 
oin
iding and remove all empty models, in
rease �,split all the models we have at hand and repeat 
lustering with the new set of models we got.If after 
lustering the number of e�e
tive models did in
rease, this means that we possiblyhave not rea
hed yet the limit required at the 
urrent level of resolution. Therefore we uniteall the 
oin
iding models and eliminate all empty models as previously, but return to 
lusteringwithout in
reasing �.



Chapter 4: Unsupervised Learning and Clustering Algorithms 33Clusters that do not split up over long ranges of � are stable 
lusters (after we split the
luster representative model and run the 
lustering pro
edure, the two 
opies either return tobe together or one of the models is \pushed out" and the se
ond one takes all the samples ofthe parent model). Stable 
lusters 
arry important information on the statisti
al stru
ture ofour sample, and in parti
ular on the underlying mixture model.Note, that the history of splits forms a tree hierar
hy of models for our sample. We startwith a single model at the root of that tree and repeatedly split our model (and 
orrespondinglyour sample), optionally till the limit when ea
h point in the sample is represented by a separate
luster. This way of 
lustering is 
alled hierar
hi
al top-down or divisive 
lustering, as opposedto hierar
hi
al bottom-up or agglomerative 
lustering where we start from the limit of taking ea
hpoint to be a separate 
luster and repeatedly unite 
lusters together until we get one big 
lusterfor the whole data (see [DHS01℄ for an example of su
h algorithm). Obviously, the approa
hdes
ribed here is highly preferred on the agglomerative 
lustering in the 
ases when we have alarge sample that splits into few large 
lusters we are interesting to �nd out.To avoid dupli
ations, a pseudo
ode for the algorithms des
ribed in this 
hapter will be givenin the next one together with our algorithm. A more detailed dis
ussion of DA may be foundin [Ros98℄.
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Chapter 5Unsupervised Sequen
eSegmentation5.1 Problem FormulationAt this point we are �nally ready to dis
uss the main issue of this work - the unsupervisedsequen
e segmentation problem. Our input is a string �x = x1::xn that was generated by amixture fT �j gk�j=1 of VMM models in the following way. At ea
h parti
ular point xi of �x onlyone sour
e was a
tive. Ea
h sour
e was allowed to generate a number of 
onsequent symbolsand only then, at a random time i, it was swit
hed by another sour
e that was possibly alreadya
tive in the pre
eding segments of �x. Our assumptions are:1. We do not know the number of sour
es k�.2. We do not know the sour
es fT �j g.3. We do not know at whi
h pla
es of �x whi
h sour
e was a
tive.4. We assume that when some sour
e T �j is a
tivated, it is a
tivated for signi�
antly longperiod of time, so that the generated segment will be \long enough". Long enough meansthat if we had the models fT �j gk�j=1, we 
ould say with very high 
on�den
e that the sub-sequen
e was generated by Tj and not by any other sour
e (we will 
all this propertydistinguishability of the model on the segment).5. We assume that the total length of the segments generated by ea
h sour
e is suÆ
ientto build a \good" model of that sour
e. A model is good if using that model we 
andistinguish the 
orresponding sour
e from all other sour
es on ea
h separate segment itgenerated.It is easy to see the 
orrelation between the assumptions 4 and 5: if we have more data we 
andistinguish between the same sour
es at higher alternation rates.Our goal is:1. To infer the most likely number of mixture 
omponents k.2. To build a model Tj for ea
h 
omponent of the mixture.35
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e Segmentation3. To partition the sequen
e into segments, when ea
h segment was (most likely) generatedby a single mixture 
omponent and identify that 
omponent.Of 
ourse, the main goal is to get the segmentation as 
lose as possible to the original one.5.2 Unsupervised Sequen
e Segmentation AlgorithmWe approa
h the problem des
ribed above with our new algorithm for unsupervised sequen
esegmentation, �rst presented in [SBT01b℄ . The algorithm is based on the observation that withPSTs we have:1. Models that indu
e probability distribution over sub-strings of �x.2. An algorithm for training a new model given a string �x and a ve
tor of weights �w (seeSe
. 3.2.3).Thus we may use the deterministi
 annealing framework des
ribed in Se
. 4.3 to �nd thenumber of sour
es that generated �x, to model the sour
es themselves and to obtain the mostlikely segmentation of �x that will emerge from 
lustering of the elements of �x, xi-s, taken intheir 
ontext in �x.We de�ne the distan
e between a symbol xi and a PST model Tj to be negative log likelihoodTj indu
es on a window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1)The role of the window is to smooth the segmentation and to enable reliable estimation of thelog likelihood. Note that in order to explore the stru
ture of a sour
e Tj we need it generate
ontinuous segments. If we were swit
hing sour
es too frequently, we would not see the timedependen
ies PTj (xijx1::xi�1) of ea
h spe
i�
 sour
e, but rather get an unidenti�able mixture.With the smoothing window xi-s 
lose in spa
e (i.e. with small di�eren
e in i) will with highprobability be 
lose to the same model Tj sin
e their windows will signi�
antly overlap.It should be mentioned that taking a window 
entered on xi instead, for example taking awindow of a form xi�(2M+1)::xi, on pra
ti
e improves the performan
e at least by a fa
tor oftwo in the sense that we may distinguish between the same sour
es when they alternate twi
emore frequently. The point of transition is also better determined with a symmetri
 window;with asymmetri
 one it is shifted to the side opposite to the \mass 
enter" of the window.Having de�ned the distan
e between a symbol and a model we may �nd the optimal assign-ment probabilities P (Tj jxi) (when xi is viewed in its 
ontext in �x) for a �xed set of PST models.We denote the set by T � fTjgkj=1. Of 
ourse, the optimality is relatively to the distan
e mea-sure we have 
hosen, sin
e we optimize (4.5). The assignment probabilities are obtained throughthe Blahut-Arimoto alternating minimization pro
edure des
ribed in Se
. 4.3.1 - see Fig. 5.1 fora pseudo
ode. Here 1nPni=1 is an empiri
al approximation of the expe
tationPx2X p(x) in (4.7).As in Se
. 4.3 we improve our 
lustering by allowing retraining of the PST models (update ofthe 
entroids of the 
lusters); the number of models is still hold �xed. We de�ne wji � P (Tj jxi),thus �wj = wj1::wjn is a ve
tor of weights asso
iated with �x and a model Tj. For model retraining
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e Segmentation 37Blahut-Arimoto(P (T�), �)Repeat until 
onvergen
e:1. 8i; j : P (Tj jxi) = P (Tj)e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Figure 5.1: The Blahut-Arimoto algorithm.Soft Clustering(T , P (T�), �)Repeat until 
onvergen
e:1. Blahut-Arimoto(P (T�), �)2. 8j : Tj = Learn PST(�x, �wj)Figure 5.2: Soft Clustering pro
edure.we use the MDL-based algorithm for PST learning des
ribed in Se
. 3.2.3. Clustering is donethrough yet another alternating minimization pro
edure, as des
ribed in Se
. 4.3.2. The soft
lustering starts with some initial guess of the models set T and a prior distribution over T ,P (T�). Then we alternatively �x the models and �nd the asso
iation probability ve
tors f �wjgkj=1,delete all the models we have and train a new set of models (of the same size) using the asso
iationprobability ve
tors we got (see Fig. 5.2).We remind that as des
ribed in Se
. 4.3.2, for ea
h level of resolution � there is a �nitenumber of models K(�), required to des
ribed �x at distortion bounded by D(�). If we startour soft 
lustering with k > K models, at the end of it we will remain with only K a
tivemodels. While in the 
ase of Gaussians 
lustering the number of e�e
tive models de
reases dueto uni�
ation of 
lusters, in sequen
e segmentation the more frequent event is a disappearan
eof a 
luster (
luster representative model remains with no data assigned to it). This is 
ausedby the usage of the averaging windows in the de�nition of our distan
e measure. Models havingsmall amounts of data slowly loose their \weight" in all the windows and the 
ompetement overthe windows pushes them out.The only thing left on our way to embedding of our 
lustering algorithm in the deterministi
annealing framework is a de�nition of the pro
edure for splitting of the PSTs in T . This isdone in a rather simple manner (see Fig. 5.3). For ea
h PST T in T we 
reate two 
opies of Tand perform random antisymmetri
 perturbations of the 
ounts ve
tors in ea
h node of the two
opies. Then we repla
e T with the two obtained PSTs while distributing P (T ) equally amongthem.



38 Chapter 5: Unsupervised Sequen
e SegmentationSplit PSTs(T , P (T�))Repla
e ea
h Tj in T by two new models:1. Start with two exa
t 
opies of Tj : Tj1 and Tj22. For ea
h node s in Tj and for ea
h � 2 �:(a) Sele
t f� = 1; � = 2g or f� = 2; � = 1g with probability 12 /12 .(b) Perturb and renormalize the 
ounts ve
tors:For Tj� : ws(�) = (1 + 
) � ws(�) (j
j � 1)For Tj� : ws(�) = (1� 
) � ws(�)3. P (Tj1) = 12P (Tj); P (Tj2) = 12P (Tj)Figure 5.3: The Split pro
edure.Now we are �nally ready to outline the 
omplete algorithm. We start with T in
luding asingle \average" PST T0 that is trained on the whole sequen
e �x with w(xi) = 1 for all i. Wethen pi
k an initial value of �, split T and pro
eed with the soft 
lustering pro
edure that isinitialized with the two models we got after split. We then split T again and repeat. If a modelis found to have lost all its data it is eliminated 1. When the number of e�e
tive models stopsin
reasing we in
rease � and repeat the whole pro
ess.We 
ontinue to in
rease � till the limit when the 
lusters be
ome just one window size.This 
orresponds to the limit when ea
h point is a separate 
luster sin
e the window size is themaximal resolution we 
an a
hieve.See Fig. 5.5 for a pseudo
ode of the algorithm and Fig. 5.4 for a s
hemati
 des
ription.5.3 RemarksAlgorithm's limitationsAs already mentioned in Se
. 5.1, the input string should have enough data to build reasonablemodels for ea
h of the sour
es. The alternation between sour
es should not be faster than theone we 
an distinguish with the models if were built from the data in a supervised fashion. I.e.if someone was giving us the true segmentation of the sequen
e and we were training a set ofmodels, ea
h on its segments of the data, those models would be well distinguishable on thesegments of the true segmentation.It should be noted that the above limitation is an inherent limitation of any algorithm thatattempt sequen
e segmentation. Being unsupervised one, our algorithm requires a bit slower1The e�e
t of uni�
ation of models is very infrequent in the pro
ess of sequen
e segmentation and thereforewas not treated.
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hemati
 des
ription of the algorithm.The segmentation algorithm:Initialization:For all i, w0(xi) = 1T0 = Learn PST(�x, �w0)T = fT0g, P (T0) = 1� = �0, kprev = 0Annealing loop:While jT j < n2M+11. While jT j > kprev(a) kprev = jT j(b) Split PSTs(T , P (T�))(
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h that P (Tj) = 0 from T .2. In
rease �Figure 5.5: Unsupervised Sequen
e Segmentation algorithm.
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Figure 5.6: A s
hemati
 des
ription of the algorithm based on Soft Clustering-NoBA pro-
edure. Compare this s
heme to the one in Fig. 5.4.alternation rates - about two or three times longer segments than the distinguishable ones, butthat is quite reasonable.There is one more limitation that is spe
i�
 to our algorithm - the averaging window size.At the moment the size of the window is an external parameter and we 
an not alter swit
hingrates that are faster than one swit
h per window. We want to note, that while large windowsdiminish our ability to distinguish between qui
kly alternating sour
es, they provide us witha more 
on�dent segmentation (i.e. we have a signi�
ant di�eren
e in P (Tj jxi) of the modelthat is a
tive on a segment and all the rest models). For too small windows the segmentationmay appear to be too noisy to be of any usefulness, as well as the segmentation pro
ess may\get lost" and suggest some o

asional and meaningless lo
al minima segmentation, espe
iallyif the input data is noisy. Thus the 
orre
t 
hoi
e of the size of the averaging window is a hardproblem by itself we are working on now. Currently the size of the window is manually 
hosendepending on the kind of the input data.Usage of the BAAs appeared in pra
ti
al appli
ations we had, it is better to make just a single pass in the BAloop instead of running it till 
onvergen
e. This means that our soft 
lustering pro
edure doesnot use the BA, but rather makes the 
al
ulation from the BA loop a single time between two
onsequent retrains of T , as shown in Fig. 5.7.This happens due to the following reason. When we do not run the BA loop till 
onvergen
ewe spend less time looking for the optimal assignment probabilities P (Tj jxi) and more in trainingnew sets of models T . Sin
e T is the determining 
omponent of the mixture, a more extensivesear
h over the spa
e of possible T -s is bene�
ial - we give our algorithm the possibility to
orre
t the 
hoi
e of T while it looks for the optimal assignment probabilities. See Fig. 5.6 for
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e Segmentation 41Soft Clustering-NoBA(T , P (T�), �)Repeat until 
onvergen
e:1. 8i; j : wj(xi) = P (Tj jxi) = P (Tj)e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)3. 8j : Tj = Learn PST(�x, �wj)Figure 5.7: Soft Clustering-NoBA pro
edurea s
hemati
 des
ription of this new version of the algorithm. The \no-BA" modi�
ation of thealgorithm was su

essfully used in our [BSMT01℄ and [SBT01a℄ works.Convergen
e of the algorithmUnfortunately at the moment we do not have a proof of 
onvergen
e of our algorithm. A
tually,the soft 
lustering pro
edure sometimes enters small \os
illations" around the point of 
onver-gen
e (very small amounts of data pass from one model to another and ba
kwards) and does not
onverge in the stri
t sense. This happens be
ause a stronger model 
an \steel" some data froma weaker one using the smoothing window. But this weakens the strong model (sin
e the datastolen has di�erent statisti
al stru
ture and adds noise) and at the next iteration it looses thestolen data ba
k. The 
onvergen
e may be for
ed by external 
ontrol (like limiting the numberof iterations, enlarging � inside the 
lustering pro
ess or entering small perturbations if thepro
ess does not 
onverge for a long time), but we see this as an \inelegant" solution. Hopefullythe problem will be solved with the improvements of the algorithm suggested in Ch. 7.
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Chapter 6Appli
ations6.1 Multilingual Texts SegmentationThe �rst appli
ation des
ribed here may look a bit arti�
ial (though we do not deny a possibilityof �nding a similar problem in the real life), but it is very useful for general understanding ofour algorithm, sin
e the data used is well explored and intuitively feasible.In this example we 
onstru
t a syntheti
 text 
omposed of alternating fragments of �ve othertexts in �ve di�erent languages: English, German, Italian, Fren
h and Russian, using standardtrans
ripts to 
onvert all into lower 
ase Latin letters with blank substituting all separators. Thelength of ea
h fragment taken is 100 letters, whi
h means that we are swit
hing languages everytwo senten
es or so. The total length of the text is 150000 letters (30000 from ea
h language).We made several independent runs of our algorithm, when based on the Soft Clustering-NoBA pro
edure (see Fig. 5.6). In every run after about 2000 a

umulated innermost (Soft Clust-ering-NoBA loop) iterations we got a 
lear-
ut, 
orre
t segmentation of the text into segments
orresponding to the di�erent languages, a

urate up to a few letters (see Fig. 6.1 and 6.2 fora typi
al example). Moreover, in all runs further splitting of all 5 language models resulted instarvation and subsequent removal of 5 extra models, taking us ba
k to the same segmentationas before (see Fig. 6.4). Also, in most runs linguisti
ally similar languages (English and Ger-man; Fren
h and Italian) separated at later stages of the segmentation pro
ess, suggesting ahierar
hi
al stru
ture over the dis
overed data sour
es (Fig. 6.3 gives an example).6.1.1 The Clustering Pro
essTo give a better understanding of our algorithm we turn to demonstrate the details of thedevelopment (or evolution) of the 
lustering pro
ess on the multilingual text example. We startwith dis
ussion of the segmentation algorithm based on the Soft Clustering-NoBA pro
edure(Fig. 5.6), sin
e this one was used to obtain all the results presented in this work. We then
ompare it with the algorithm based on Blahut-Arimoto pro
edure, when we run it till the
onvergen
e (Fig. 5.4), and show the drawba
ks of su
h approa
h.In Fig. 6.3 we depi
t the probabilities of ea
h of the models in T , as 
al
ulated in step 2.of the Soft Clustering-NoBA pro
edure (Fig. 5.7), as a fun
tion of 
umulative number of thisiteration. The values of � and points of its in
rements (after 
onvergen
e of the number ofmodels at the 
urrent value of �) are written below the x axis. \Falls down" and subsequent43
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Figure 6.3: Sour
e separation with Soft Clustering-NoBA.We show the probability P (Tj)of ea
h model, as 
al
ulated in step 2. of the Soft Clustering-NoBA pro
edure (see Fig. 5.7), asa fun
tion of 
umulative number of this iteration. The values of � at the 
orresponding pla
esof the 
lustering evolution pro
ess are written below the x axis. Languages, 
aptured by ea
hmodel after 
onvergen
e of the 
lustering pro
ess, are designated (models Tj with P (Tj) � 0:2
apture a single language and therefore are not always labelled). See Se
. 6.1.1 for dis
ussion ofthis graph.bifur
ations in the graph 
orrespond to T splitting events (when we split Tj , P (Tj) is equallydistributed among the two son models, 
ausing the 
urve to \fall" by a fa
tor of 2). Curvesgoing down to zero 
orrespond to models loosing all their data; those models are eliminated after
onvergen
e. For models in
orporating more than one language (and for some \singletons") thelanguages 
aptured by the model after 
onvergen
e of Soft Clustering-NoBA are designated.Be
ause we have 5 languages with equal amount of data from ea
h one, the probability P (Tj)of a model 
apturing a single sour
e is approximately 0.2.There are several important observations we may do:1. After the algorithm separated all the 5 languages (T grew up to in
lude 5 models) furthersplits of T and subsequent exe
ution of Soft Clustering-NoBA resulted in starvation of the5 extra models and 
onvergen
e to the same segmentation we had before the split. Thisholds true for relatively long range of � (whi
h is in
reased after ea
h 
onvergen
e sin
ethe number of models does not in
rease), as may be seen in the zoom out of the graph inFig. 6.4. Thus we may 
on
lude that the obtained 
lusters are stable.2. Linguisti
ally similar languages (like English and German; Italian and Fren
h) separateat greater values of � (later stages of the segmentation pro
ess), suggesting a philologi
altree stru
ture over the languages. For the 5 languages shown the philologi
al relations
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e separation with Soft Clustering-NoBA - zoom out. Zoom out ofFig. 6.3. Observe that the (
orre
t) segmentation obtained after 2000 iterations does not 
hangeas we in
rease � for rather long period, pointing out that the obtained 
lusters are stable.we got 
ommit to the ones presented in [EYFT98℄ work, where the tree was built usingbottom-up strategy (also based on the statisti
s of the languages).3. Put attention on the /-like shape of 
urves in some pla
es short after the splits (most
learly seen around the iterations #1250 and #1850). This witnesses that the segmentationpro
ess \feels" the underlying data and may 
orre
t non-optimal splits.4. Observe, that at steps 1400-1800 the segmentation 
onverges to 5 models, but after asubsequent split two of them unite ba
k (or, more 
orre
tly, the data 
aptured by the twounites ba
k into a single 
luster). This happened sin
e 4 models are suÆ
ient to des
ribethe data at the 
urrent level of resolution, and the segmentation with 5 models was justsome lo
al minima. Thus we see that a split of T may take the algorithm out of somelo
al minima it o

asionally got into.Running BA till 
onvergen
eIn Fig. 6.5 we show a graph similar to the one in Fig. 6.3 with the only di�eren
e that thistime we used the segmentation algorithm based on the BA pro
edure when exe
uted until
onvergen
e. The graph shows P (Tj) as a fun
tion of the 
umulative number of iteration 2. inthe BA pro
edure (see Fig. 5.1) where P (Tj) is 
al
ulated. Comparing Fig. 6.5 with Fig. 6.3 wemay observe that:1. The 
urves after the bifur
ations have a 
lear <-like shape (
ompared to /-like in Fig. 6.3).This witnesses that on
e a \dire
tion" for a separation of models was 
hosen, it 
an not
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e separation with BA. The graph is similar to the one in Fig. 6.3 with the onlydi�eren
e that this time we used segmentation algorithm based on the BA loop when exe
uted until
onvergen
e. The graph shows P (Tj) as a fun
tion of the 
umulative number of the se
ond iterationin the BA pro
edure, where it is 
al
ulated (see Fig. 5.1). Languages 
aptured by ea
h model after
onvergen
e of the Soft Clustering are designated and the values of � 
orresponding to the iterations arewritten below the x axis. Compare this graph to the one in Fig. 6.3.be 
hanged.2. The languages start separating at � values over 1.0, while in Fig. 6.4 at � = 1:0 we alreadyhad a 
lear and stable segmentation of the whole text sequen
e.We 
on
lude that when BA is exe
uted till the 
onvergen
e the algorithm is more exposed tolo
al minima sin
e it gets no 
han
e to 
orre
t the non-optimal set of models T it obtained aftera random split, and the BA takes it in a random dire
tion to the 
losest minimum. While forthe multilingual data we got the same �nal separation with both versions of the algorithm (dueto relative simpli
ity of the data and strong attra
tion of the global optimum), for biologi
alsequen
es usage of the segmentation algorithm based on Soft Clustering-NoBA pro
edure gavesigni�
ant improvements (a
tually, we were not able to obtain any results with the BA-basedalgorithm).6.1.2 Going toward the limitsIn this se
tion we try to �nd the limits of power of our algorithm. The aim is to build a kindof a ben
hmark to enable evaluation of the future developments of the algorithm. In all thepresented experiments (as well as in the one presented earlier) we use an averaging window of 21letters size (M = 10), as this experimentally appeared to be the best for working with languages.
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English German Italian French Russian (b) Very small sample sizeFigure 6.6: Limits of power. The graphs are similar to the one in Fig. 6.1: they show�d(xi; Tj)for sele
ted fragment of text. (a) - the alternation frequen
y taken is 30 letters (total amount oftext is 30000 letters from ea
h language, as in Fig. 6.1). (b) - the alternation rate is 100 letters(as in Fig. 6.1), but the total amount of text from ea
h language is 6000 letters only. One maynoti
e a degradation in the segmentation quality, but the separation is still present.Working with very high alternation ratesIn our �rst su
h experiment we try to �nd the limit of the alternation rate we are able to dete
t.We keep the amount of data as in the previous example - 30000 letters from ea
h language, andde
rease the length of ea
h segment (while in
reasing their amount). This way we 
ould getdown to 30 symbols fragments, i.e. we were swit
hing the languages every 30 letters, whi
h isquite amazing sin
e 30 letters make less than an average senten
e. The segmentation we got ispresented in Fig. 6.6.a. It should be noted that the segmentation we got was not stable - aftersubsequent splits the models (mainly the Italian and the Fren
h ones) 
ould reunite together andthen separate again. But at 40 letters alternation frequen
y (two times the averaging windowsize) the segmentation was both 
lear and stable.Working with very small amounts of dataIn our next experiment we try to �nd the minimal amount of data needed to perform thesegmentation. We kept on alternation frequen
y of 100 symbols and tried to minimize thenumber of fragments taken. The low we 
ould get to was 6000 letters from ea
h language (60fragments), see Fig. 6.6.b for the result. This seems to be an inherent limitation on the amountof data from the side of the PST model we 
urrently work with: the PSTs we got after trainingthem on 6000 letters of text on di�erent languages were 10-15 nodes size (and of depth 1). Thisseems to be the minimum to make any statisti
ally signi�
ant generalizations. We note thatthis time the segmentation also was not stable at the Italian and Fren
h segments. To get a
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h language.Limiting the depth of PSTIn our last experiment we try to limit the depth (and thus power) of the PST model. Whenlimited to 1, it may be seen that the models are still able to distinguish between the languages (seeFig. 6.7.a), but the segmentation quality is more poor, 
omparing to the one of non-limited PSTs(in Fig. 6.1). The log likelihood (or negative distan
e between the symbols and 
orrespondingmodels) also de
reases. When the depth is limited to zero (just a single root node), the powerof the segmentation algorithm de
reases drasti
ally - it 
an hardly distinguish between twolanguages when swit
hed only every 200 letters (see Fig. 6.7.b).Thus we 
on
lude that the power of the PST model plays an important role in the wholealgorithm, and further strengthening of the model may award us with even better results.6.2 Classi�
ation of ProteinsIn this se
tion we are going to show the potential of applying our algorithm to the problem ofprotein sequen
es 
lassi�
ation. We start with a very short introdu
tion to the �eld of mole
ularbiology and 
urrent methods for protein sequen
es analysis. People interested in getting morewide and deep knowledge in those �elds are mostly wel
ome to look in [ABL+94℄ and [DEKM98℄.Then we show some results obtained with our algorithm, mainly from the [BSMT01℄ work.
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ations6.2.1 Very Short Introdu
tion to Mole
ular BiologyProteins are sequen
es of amino-a
ids. There are 20 di�erent amino-a
ids biologists distinguishin nature, thus ea
h protein may be viewed as a pie
e of text over a 20 letters alphabet. Thelength of most sequen
es varies from a few tens to a bit over a thousand amino a
ids with typi
alvalues in the range of few hundreds.The fun
tion of a protein is determined by its sequen
e. Numerous proteins exhibit a modularar
hite
ture, 
onsisting of several sequen
e domains that often 
arry spe
i�
 biologi
al fun
tions(reviewed in [Bor92℄ and [BK96℄). For proteins whose stru
ture has been solved, it 
an beshown in many 
ases that the 
hara
terized sequen
e domains are asso
iated with autonomousstru
tural domains. In proteins of various organisms we may �nd domains that are responsiblefor similar bio
hemi
al fun
tionality. The sequen
es of those domains will usually be resembling,but not identi
al. Chara
terization of a protein family by its distin
t sequen
e domains (alsotermed 'modules') either dire
tly or through the use of domain 'motifs' or 'signatures' (shortsub-segments of the domain that are typi
al for most members of that family), is 
ru
ial forfun
tional annotation and 
orre
t 
lassi�
ation of newly dis
overed proteins.Many methods have been proposed for 
lassi�
ation of proteins based on their sequen
e
hara
teristi
s. Most of them are based on a seed multiple sequen
e alignment (MSA - see[DEKM98℄) of proteins that are known to be related. The multiple sequen
e alignment 
anthen be used to 
hara
terize the family in various ways: by de�ning 
hara
teristi
 motifs ofthe fun
tional sites (as in Prosite, [HBFB99℄), by providing a �ngerprint that may 
onsist ofseveral motifs (PRINTS-S, [ACF+00℄), by des
ribing a multiple alignment of a domain using ahidden Markov model (Pfam, [BBD+00℄), or by a position spe
i�
 s
oring matrix (BLOCKS,[HGPH00℄). All the above te
hniques, however, rely strongly on the initial sele
tion of therelated protein segments for the MSA, usually hand 
rafted by experts, and on the quality ofthe MSA itself. Besides being in general 
omputationally intra
table, when remote sequen
es arein
luded in a group of related proteins, establishment of a good MSA 
eases to be an easy taskand delineation of the domain boundaries proves even harder. This be
omes nearly impossiblefor heterogeneous groups of proteins, where the shared motifs are not ne
essarily abundant ordo not 
ome in the same order.The advantage of our algorithm is that it does not attempt any alignment, but rather 
lusterstogether regions with similar statisti
s. The regions need not 
ome in the same order, nor theyneed to be identi
al - small variations are just a part of the VMM model. In addition, ouralgorithm is unsupervised - there is no need in prior sele
tion of groups of related proteins, thealgorithm will �nd them even in a bun
h of unrelated stu�, as we will show shortly. This is evenmore attra
ting sin
e the algorithm may �nd some new stru
ture or 
orrelations in the datawe possibly have not thought about. Thus our approa
h opens a new promising way to proteinsequen
e analysis, 
lassi�
ation and fun
tional annotation.6.2.2 Experimental resultsIn this se
tion we demonstrate the results of appli
ation of our algorithm to several proteinfamilies. We used the modi�ed version of the algorithm, based on the Soft Clustering-NoBApro
edure, that works with sets of multiple strings.The di�erent training sets were 
onstru
ted using the Pfam (release 5.4) and Swissprot(release 38 [BA00℄) databases. Various sequen
e domain families were 
olle
ted from Pfam. In



Chapter 6: Appli
ations 51ea
h Pfam family all members share a domain. An HMM dete
tor is built for that domainbased on an MSA of a seed subset of the family domain regions. The HMM is then veri�ed todete
t that domain in the remaining family members. Multi-domain proteins therefore belongto to as many Pfam families as there are di�erent 
hara
terized domains within them. In orderto build realisti
, more heterogeneous sets, we 
olle
ted from Swissprot the 
omplete sequen
esof all 
hosen Pfam families. Ea
h set now 
ontains a 
ertain domain in all its members, andpossibly various other domains appearing anywhere within some members.There were two types of PST models we got in the pro
ess of 
lustering of the protein data:models that signi�
antly outperform others on relatively short regions (and generally do pooron most other regions) - these we 
all dete
tors; and models that perform averagely over allsequen
e regions - these are \protein noise" (baseline) models. In what is following we analysewhat kind of protein segments were sele
ted by the dete
tors on three exemplary families. Ingeneral the \highlighted" segments may be 
hara
terized as \segments with highly 
onservedstatisti
s (sequen
e), 
ommon to at least small amount of the input proteins". Being su
h, thedete
ted segments may be seen as signatures (or �ngerprints) of the domains, though in the
ases of very 
onserved domains the 
omplete domain may be 
overed by the dete
tor(s). In any
ase, sin
e living organisms pass through a pro
ess of natural sele
tion, we know that only thosewho have a fun
tioning set of proteins survive. Thus \noisy" segments 
orrespond to less 
riti
alse
tions of proteins and a \mistake" (substitution, insertion or deletion of amino a
id) in thosese
tions is possible - therefore we get lots of di�erent variants of those segments. As to segmentssele
ted by the dete
tors - those are vitally important parts of the protein and a mistake there(during the repli
ation pro
ess of the 
orresponding DNA segment) 
auses loss of fun
tionalityof the protein and subsequent death of the organism. Therefore those segments are (almost) thesame in all living organisms we see. The amount (or per
entage) of proteins sharing a similarsegment among all the input proteins may be miserable and the similarity will still be found (inone example we had a domain that was 
ommon to only 12 out of 396 input proteins, and itstill was altered). This is a 
lear and strong advantage of our approa
h 
ompared to MSA, aswill be demonstrated here.In all the following examples we made several independent runs of our algorithm on ea
h 
ho-sen family. For ea
h family the di�erent runs 
onverged to the same (stable) �nal segmentation.In the presented graphs we show the segmentation of single representative protein sequen
es outof the explored families. The Swissprot a

ession number of the representative sequen
es shownwill be written at the top of ea
h graph.The Pax FamilyPax proteins (reviewed in [SKG94℄) are eukaryoti
 trans
riptional regulators that play 
riti
alroles in mammalian development and in on
ogenesis. All of them 
ontain a 
onserved domain of128 amino a
ids 
alled the paired or paired box domain (named after the drosophila paired genewhi
h is a member of the family). Some 
ontain an additional homeobox domain that su

eedsthe paired domain. Pfam nomen
lature names the paired domain \PAX".The Pax proteins show a high degree of sequen
e 
onservation. One hundred and sixteenfamily members were used as a training set for the segmentation algorithm. In Fig. 6.8 wesuperimpose the predi
tion of all resulting PST dete
tors over one representative family member.This Pax6 SS protein 
ontains both the paired and homeobox domains. Both have mat
hing
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Figure 6.8: Paired/PAX + homeobox signatures. The graph shows the segmentation of PAX6 SSprotein we got. At the bottom we denote in Pfam nomen
lature the lo
ation of the two experimentallyveri�ed domains. These are in near perfe
t mat
h here with the high s
oring sequen
e segments.signatures. This also serves as an example where the signatures exa
tly overlap the domains.The graph of family members not having the homeobox domain 
ontains only the paired domainsignature. Note that only about half of the proteins 
ontain the homeobox domain and yet itssignature is very 
lear.DNA Topoisomerase IIType II DNA topoisomerases are essential and highly 
onserved in all living organisms (see[Ro
95℄ for a review). They 
atalyze the inter
onversion of topologi
al isomers of DNA andare involved in a number of me
hanisms, su
h as super
oiling and relaxation, knotting andunknotting, and 
atenation and de
atenation. In prokaryotes the enzyme is represented bythe Es
heri
hia 
oli gyrase, whi
h is en
oded by two genes, gyrase A and gyrase B. The en-zyme is a tetramer 
omposed of two gyrA and two gyrB polypeptide 
hains. In eukaryotesthe enzyme a
ts as a dimer, where in ea
h monomer two distin
t domains are observed. TheN-terminal domain is similar in sequen
e to gyrase B and the C-terminal domain is similar insequen
e to gyraseA (Fig. 6.9.a). In Pfam 5.4 terminology gyrB and the N-terminal domainbelong in the \DNA topoisoII" family1, while gyrA and the C-terminal domain belong in the\DNA topoisoIV" family2. Here we term the pairs gyrB/topoII and gyrA/topoIV.1Apparently this family has been sub-divided in Pfam 6 releases.2The name should not be 
onfused with the spe
ial type of topoisomerase II found in ba
teria, that is alsotermed topoisomerase IV, and plays a role in 
hromosome segregation.
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oli gyrase B
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(d) Yeast topoisomerase IIFigure 6.9: DNA topoisomerase II. (a) - Fusion event illustration, adapted from [MPN+99℄. ThePfam domain names are added in bra
kets, together with a referen
e to our results on a representativehomolog. Compare the PST signatures in �gures (b)-(d) with the s
hemati
 drawing in (a). It is 
lear thatthe eukaryoti
 signature is indeed 
omposed of the two prokaryoti
 ones, in the 
orre
t order, omittingthe C-terminus signature of gyrase B (short termed here as \Gyr").For the analysis we used a group of 164 sequen
es that in
luded both eukaryoti
 topoi-somerase II sequen
es and ba
terial gyrase A and B sequen
es (gathered from the union ofthe DNA topoisoII and DNA topoisoIV Pfam 5.4 families). We su

essfully di�erentiate theminto sub-
lasses. Fig. 6.9.d des
ribes a representative of the eukaryoti
 topoisomerase II se-
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ationsquen
es and shows the signatures for both domains, gyrB/topoII and gyrA/topoIV. Fig. 6.9.band Fig. 6.9.
 demonstrate the results for representatives of the ba
terial gyrase B and gyraseA proteins, respe
tively. The same two signatures are found in all three sequen
es, at the ap-propriate lo
ations. Interestingly, in Fig. 6.9.b in addition to the signature of the gyrB/topoIIdomain another signature appears at the C-terminal region of the sequen
e. This signature is
ompatible with a known 
onserved region at the C-terminus of gyrase B,3 that is involved inthe intera
tion with the gyrase A mole
ule.The relationship between the E. 
oli proteins gyrA and gyrB and the yeast topoisomeraseII (Fig. 6.9.a) provides a prototypi
al example of a fusion event of two proteins that form a
omplex in one organism into one protein that 
arries a similar fun
tion in another organism.Su
h examples have lead to the idea that identi�
ation of those similarities may suggest therelationship between the �rst two proteins, either by physi
al intera
tion or by their involvementin a 
ommon pathway [MPN+99, EIKO99℄. The 
omputational s
heme we present 
an be usefulin sear
h for these relationships.The Glutathione S-Transferases (GST)The glutathione S-transferases (GST) represent a major group of detoxi�
ation enzymes (re-viewed in [HP95℄). There is eviden
e that the level of expression of GST is a 
ru
ial fa
tor indetermining the sensitivity of 
ells to a broad spe
trum of toxi
 
hemi
als. All eukaryoti
 spe
iespossess multiple 
ytosoli
 GST isoenzymes, ea
h of whi
h displays distin
t binding properties.A large number of 
ytosoli
 GST isoenzymes have been puri�ed from rat and human organs.On the basis of their sequen
es they have been 
lustered into �ve separate 
lasses designated
lass alpha, mu, pi, sigma, and theta GST. The hypothesis that these 
lasses represent separatefamilies of GST is supported by the distin
t stru
ture of their genes and their 
hromosomallo
ation. The 
lass terminology is deliberately global, attempting to in
lude as many GSTs aspossible. However, it is possible that there are sub-
lasses that are spe
i�
 to a given organismor a group of organisms. In those sub-
lasses the proteins may share more than 90% sequen
eidentity, but these relationships are masked by their in
lusion in the more global 
lass. The
lassi�
ation of a GST protein with weak similarity to one of these 
lasses is sometimes a dif-�
ult task. In parti
ular, the de�nition of the sigma and theta 
lasses is impre
ise. Indeed inthe PRINTS [ACF+00℄ database only the three 
lasses, alpha, pi, and mu have been de�ned bydistin
t sequen
e signatures, while in Pfam all GSTs are 
lustered together, for la
k of sequen
edissimilarity.Three hundred and ninety six Pfam family members were segmented jointly by our algorithm,and the results were 
ompared to those of PRINTS (as Pfam 
lassi�es all as GSTs). Five distin
tsignatures were found: (1) A typi
al weak signature 
ommon to many GST proteins that 
ontainno sub-
lass annotation. (2) A sharp peak after the end of the GST domain appearing exa
tlyin all 12 out of 396 (3%) proteins where the elongation fa
tor 1 gamma (EF1G) domain su

eedsthe GST domain (Fig. 6.10.a). (3) A 
lear signature 
ommon to almost all PRINTS annotatedalpha and most pi GSTs (Fig. 6.10.b). The last two signatures require more knowledge ofthe GST superfamily. (4) The theta and sigma 
lasses are abundant in nonvertebrates. Asmore and more of these proteins are identi�ed it is expe
ted that additional 
lasses will bede�ned. The �rst eviden
e for a separate sigma 
lass was obtained by sequen
e alignments of3Corresponding to the Pfam \DNA gyraseB C" family.
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GST (d) Putative � GST signatureFigure 6.10: Glutathione S-transferases.S-
rystallins from mollus
 lens. Although these refra
tory proteins in the lens probably do nothave a 
atalyti
 a
tivity they show a degree of sequen
e similarity to the GSTs that justi�estheir in
lusion in this family and their 
lassi�
ation as a separate 
lass of sigma [BE92℄. This
lass, de�ned in PRINTS as S-
rystallin, was almost entirely identi�ed by the fourth distin
tsignature (Fig. 6.10.
). (5) Interestingly, the last distin
t signature, is 
omposed of two dete
tormodels, one from ea
h of the previous two signatures (alpha + pi and S-
rystallin) Fig. 6.10.d.Most of these two dozens proteins 
ome from inse
ts, and of these most are annotated to belongto the theta 
lass. Note that many of the GSTs in inse
ts are known to be only very distantly
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ationsrelated to the �ve mammalian 
lasses. This putative theta sub-
lass, the previous signaturesand the undete
ted PRINTS mu sub 
lass are all 
urrently further investigated.
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PAX homeoboxFigure 6.11: Pax MSA pro�le 
onservation. We plot the 
lustal X 
onservation s
ore of the PAX6SS protein against an MSA of all Pax proteins. While the predominant paired/PAX domain is dis
erned,the homeobox domain (appearing in about half of the sequen
es) is lost in the ba
kground noise. Comparethis graph to the one in Fig. 6.8.Comparative resultsIn order to evaluate our �ndings we have performed three unsupervised alignment driven exper-iments using the same sets des
ribed above: an MSA was 
omputed for ea
h set using 
lustalX [JTG+98, Linux version 1.81℄. We let 
lustal X 
ompare the level of 
onservation betweenindividual sequen
es and the 
omputed MSA pro�le in ea
h set. Qualitatively these graphsresemble ours, apart from the fa
t that they do not o�er separation into distin
t models.We brie
y re
ount the results we got: the Pax family alignment (shown in Fig. 6.11) dis
ernedthe dominant Pax domain, but did not 
learly elu
idate the homeobox domain existing in abouthalf of the sequen
es and 
learly seen in Fig. 6.8 (
ompare Fig. 6.11 with Fig. 6.8). For typeII topoisomerases the Gyrase B C-terminus unit from Fig. 6.9.b 
an be dis
erned from themain unit, but with a mu
h lower peak. And the 
lear sum of two signatures we obtained forthe eukaryoti
 sequen
es (Fig. 6.9.d) is lost in noise. In the last and hardest 
ase the MSAapproa
h tells us nothing. All GST domain graphs look nearly identi
al pre
luding any possiblesubdivision. And the 12 (out of 396) instan
es of the EF1G domain are 
ompletely lost at thealignment phase.



Chapter 7Dis
ussion and Further Work7.1 Dis
ussionThe sequen
e segmentation algorithm we des
ribe and evaluate in this work is a 
ombinationof several di�erent information theoreti
 ideas and prin
iples, naturally 
ombined into one new
oherent pro
edure. The 
ore algorithm, the 
onstru
tion of PST, is essentially a sour
e 
od-ing loss-less 
ompression method. It approximates a 
omplex sto
hasti
 sequen
e by a Markovmodel with variable memory length. The power of this pro
edure, as demonstrated on bothnatural texts and on protein sequen
es [RST96, BY01℄, is in its ability to 
apture short strings(suÆxes) that are signi�
ant predi
tors - thus good features - for the statisti
al sour
e. We
ombine the PST 
onstru
tion with another information theoreti
 idea - the MDL prin
iple -and obtain a more eÆ
ient estimation of the PST, 
ompared with its original learning algo-rithm. In addition, the new algorithm is 
ompletely non-parametri
 and thus perfe
tly suits forunsupervised learning problems.Our se
ond key idea is to embed the PST 
onstru
tion in a lossy 
ompression framework byadopting the rate-distortion theory into a 
ompetitive learning pro
edure. We treat the PSTas a model of a single statisti
al sour
e and use the rate distortion framework to partition thesequen
es between several su
h models in an optimal way. Here we spe
i�
ally obtain a moreexpressive statisti
al model, as mixtures of (short memory, ergodi
) Markov models lay outsideof this 
lass, and 
an be 
aptured only by mu
h deeper Markov models. This is a 
lear advantageof our 
urrent approa
h over mixtures of HMMs (as done in [FST98℄) sin
e mixtures of HMMsare just HMMs with 
onstrained state topology.The analogy with rate-distortion theory enables us to take advantage of the trade-o� between
ompression (rate) and distortion, and use the Lagrange multiplier �, required to implement thistrade-o�, as a resolution parameter. The deterministi
 annealing framework follows naturally inthis formulation and provides us with a simple way to obtain hierar
hi
al segmentation of very
omplex sequen
es. As long as the underlying statisti
al sour
es are distin
t enough, 
omparedto the average alternation rate between them and the total amount of data from ea
h sour
e,our segmentation s
heme should perform well.In our experiments with segmentation of multilingual text sequen
es (mixtures of Europeanlanguages) we demonstrated the ability of our algorithm to di�erentiate between the languageswith a pre
ision of few letters, even when the languages are swit
hed every 30-40 letters. The57



58 Chapter 7: Dis
ussion and Further Workminimal amount of text (from ea
h language) needed to perform any segmentation appeared tobe around 6000-8000 letters.Our experiments with protein families demonstrated a number of 
lear advantages of theproposed algorithm: it is fully automated; it does not require or attempt an MSA of the inputsequen
es; it handles heterogeneous groups well and lo
ates domains appearing only few times inthe data; by nature it is not 
onfused by di�erent module orderings within the input sequen
es;it appears to seldom generate false positives; and it is shown to surpass HMM 
lustering in atleast one hard instan
e.In our opinion the new tool may suggest a new perspe
tive on protein sequen
e organizationat large. Statisti
al 
onservation is unlike 
onventional sequen
e 
onservation. Regions maybe statisti
ally identi
al, while 
ompletely di�erent from the alignment point of view (like inthe 
ase of multilingual texts). We hope that this new, mu
h more 
exible notion of sequen
e
onservation will eventually help better understand the 
onstraints shaping the world of knownproteins.7.2 Further WorkThere is a plenty of dire
tions to take our algorithm to both in the appli
ative and in thetheoreti
al �elds.In the appli
ative �eld it would be extremely interesting to run our algorithm on all knownproteins. The top-down organization of proteins may bring new interesting insights into the
ompli
ated world of biology. We also think about trying our algorithm on additional types ofdatasets, su
h as DNA sequen
es, network 
ow, spike trains, spee
h signals, sto
k rates, et
.In the theoreti
al aspe
t we see two independent parts in our algorithm: training of new setof models given a segmentation, and �nding a \good"1 segmentation given a set of models.We think that there is still pla
e for improvement of the PST model. We may try to improvethe 
ompression ratio by uniting together son nodes with similar statisti
s (like it is done in the[RST95℄ work). We may also try to improve the time 
omplexity of the algorithm by embeddingthe ideas of the [AB00℄ work to our 
ase of MDL-oriented learning of PSTs. The MDL 
odingof a single node in PST may also be improved, as was dis
ussed in our talk with Adi Wynner.As to the segmentation of a sequen
e with a given set of models, our main aim at the momentis to get rid of the �xed size averaging window. We think that the way to do this lies throughsegmentation pro
ess similar to as it is done in HMMs. Hopefully, with a new segmentationpro
edure we will also be able to prove the 
onvergen
e of our algorithm. It seems like we shouldobtain and prove a monotoni
 de
rease of the total 
ode length, and not just an in
rease of thelikelihood of the data, as it is done in the proof of 
onvergen
e of the EM algorithm. And itseems like HMM-like formulation of the segmentation pro
edure may help us with this.We denote by hi = x1::xi�1 the \history" pre
eding xi. Then P (Tj jhi) is the prior probabilitythat Tj is the generating model at index i of the sequen
e, and P (Tj jxi; hi) is the posterior ofTj . This time we de�ne the distan
e between xi and Tj to be negative log likelihood Tj gives toxi only - we do not use the averaging window:d(xi; Tj) = � lnP (xijTj)1Our experien
e with the BA points out that possibly we do not always want to get the best segmentationright away.



Chapter 7: Dis
ussion and Further Work 59Thus our assignment probabilities in 1. of the Soft Clustering-NoBA pro
edure (Fig. 5.7) arede�ned as: P (Tjjxi; hi) = P (Tj jhi)e� lnP (xijTj)Z(xi; �)Where Z(xi; �) is a normalization fa
tor.The sequential dependen
ies in the data (the limitation of the swit
hing rate) are now ex-pressed through the prior probabilities that are not 
onstant over the sequen
e any more:P (Tj jhi) =X� P (T�jxi�1; hi�1)P (T� ! Tj)Here P (T� ! Tj) is the probability that a model T� is swit
hed to a model Tj at pla
e i, andP (T�jxi�1; hi�1) is the posterior probability of T� at index i� 1.The only thing left to de�ne now are the transition probabilities P (T� ! T�). If we de�nethem to be some arbitrary 
onstant: P (T� ! T�) = ��� , we will get averaging windows ofexponential form (whi
h, we think, should be better than uniform averaging windows we havenow). Another option is to try to estimate those probabilities, as it is done in the Baum-Welsh algorithm (see [Rab86℄ for an overview). One more option is to 
al
ulate ��� using MDLprin
iples and to prove some upper bound on the 
ompression ratio we get 
ompared to theoptimal one we 
ould get. I.e. we may try to improve the results of [HW98℄ for the 
ase whenthe predi
ting models (experts) are known.
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