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AbstratUnsupervised lassi�ation, or lustering, is one of the basi problems in data analysis. Whilethe problem of unsupervised lassi�ation of independent random variables has been deeplyinvestigated, the problem of unsupervised lassi�ation of dependent random variables, andin partiular the problem of segmentation of mixtures of Markov soures, has been hardly ad-dressed. At the same time supervised lassi�ation of Markov soures has beome a fundamentalproblem with many important appliations, suh as analysis of texts, handwriting and speeh,neural spike trains and bio-moleular sequenes. This question, previously approahed withhidden Markov models (HMMs), in the last deade found additional interesting solutions us-ing adaptive statistial models with improved learnability properties. One of suh models isPredition SuÆx Tree (PST), suggested in [RST96℄.Our urrent work omes to lose the gap between our abilities in supervised and unsupervisedlearning. We desribe and analyze a novel information theoreti algorithm for unsupervisedsegmentation of sequenes into alternating variable memory Markov soures, �rst presented in[SBT01b℄. The algorithm is based on a new proedure for PST learning that uses MDL prinipleto ontrol PST omplexity and gets no external parameters. The algorithm embeds ompetitivelearning of the PST models into model lustering proedure, based on rate distortion theoryombined with deterministi annealing. The omplexity of the mixture (lustering resolution)is gradually inreased through annealing of the rate-distortion tradeo�. As a result we obtaina hierarhial top-down segmentation of sequenes into alternating variable memory Markovsoures.The method is suessfully applied to unsupervised segmentation of multilingual texts intolanguages, where it is able to infer orretly both the number of languages and the languageswithing points. When applied to protein sequene families (results of the [BSMT01℄ work),we demonstrate the method's ability to identify biologially meaningful sub-sequenes withinthe proteins, whih orrespond to signatures of important funtional sub-units, alled domains.Our approah to proteins lassi�ation (through the obtained signatures) is shown to have bothoneptual and pratial advantages over the urrently used methods.
1





Chapter 1Introdution Life is just a long random walk.Devroye, Gy�or�, Lugosi.A Probabilisti Theory of Pattern Reognition, 1996.Life is just a long random walk. And being the ones walking we would naturally like topredit the future of this walk. But most times the only information we have about the futureis the past we already saw and the hoped-to-be-right belief that future will behave like the pastin the meaning that similar situations will result in similar development. The last assumptionis based on our past experiene that physial laws are time and spae invariant.Learning theory deals with the question of prediting the (results of) future events given the(results of) past events and sometimes some additional observations related to the future. The�rst signi�ant results in formal de�nition and exploration of this question were obtained in the1920's - 1930's by [Fis22, Fis25, Gli33, Can33, Kol33℄. Though the �eld formed as a separate�eld of studies only in the 1970's - 1980's with the works of [VC71, VC81, Val84℄. In general,the learning theory may be seen as an intersetion of statistis with the omputational theory.One may also �nd deep onnetions of the learning theory to the information theory; some ofthem will be disussed here.The question of prediting the future events based on the results of the past events is knownas the question of statistial inferene. The simplest model of statistial inferene is patternreognition problem. Pattern reognition deals with estimation of f0,1g-valued funtions. Thisproblem is disussed in depth in [DH73, Bis95, DGL96, Vap98℄ and many other books. Some-times, espeially when the investigated funtion takes more than two, but �nite number ofpossible values, the problem is also alled lassi�ation (the value of the funtion is the index ofthe lass its argument belongs to). A more general and hard problem of estimating real-valuedfuntions is known as a problem of regression estimation, disussed in [Vap98, Bis95℄. In bothases the input we get is a set of hx; f(x)i pairs where x belongs to some spae we are samplingfrom and f(x) is the value of the investigated funtion at x. This set of pairs is alled our past,history or training sample. The \future" we want to predit is the value of f at some new pointx we have not seen yet. In a slightly di�erent formulation, x may ome from some probabilityspae X , and f may be a probability density funtion over X . Then our sample will be just aset of points sampled from X aording to f , and we will have to estimate f over whole X . Inthis setting the problem is alled density estimation problem (see [Vap98, Bis95℄).3



4 Chapter 1: IntrodutionA more general setting of the density estimation problem is when x-es are drawn aordingto multiple distributions f1; ::; fk, when the generating distribution is hosen randomly beforeeah trial or sequene of trials. If in addition to learning the resulting mixture distribution wetry to learn eah fj in partiular, the problem is known as a problem of unsupervised learning(unsupervised sine we do not get the orrespondene between the data points and their gen-erating distributions expliitly in our input). When our primary interest fouses on �nding theorrespondenes between the data points and the soures (f1; ::; fk) that most likely generatedthem, the problem is also known as unsupervised lassi�ation or lustering of the data (herethe lass of a point is the index of the distribution funtion it was most likely sampled from).The problem of unsupervised learning was deeply studied for the ase of independent randomvariables in <n (points) - see [DHS01℄ and [Ros98℄ for an overview. Though little work was donefor the ase of dependent variables and sequenes in partiular (see [FR95℄).At the same time segmentation of sequenes has beome a fundamental problem with manyimportant appliations suh as analysis of texts, handwriting and speeh, neural spike trains andbio-moleular sequenes. The most ommon statistial approah to this problem, using hiddenMarkov models (HMM), was originally developed for the analysis of speeh signals, but beamethe method of hoie for statistial segmentation of most natural sequenes (see [Rab86℄). HMMsare prede�ned parametri models - their arhiteture and topology are predetermined and thememory is limited to �rst order in most ommon appliations. The suess of HMMs thusruially depends on the orret hoie of the state model. It is rather diÆult to generalizethese models to hierarhial strutures with unknown a-priory state topology (see [FST98℄ foran attempt).An interesting alternative to the HMM was proposed in [RST96℄ in the form of a sub lass ofprobabilisti �nite automata, the variable memory Markov (VMM) soures. These models haveseveral important advantages over the HMMs:1. They apture longer orrelations and higher order statistis of the sequene.2. They an be learned in a provably optimal PAC like sense using a onstrution alledpredition suÆx tree (PST) [RST96℄.3. They an be learned eÆiently by linear time algorithm [AB00℄.4. Their topology and omplexity are determined by the data.In this work we desribe a powerful extension of the VMM model and the PST algorithm toa stohasti mixture of suh models, suggested in [SBT01b℄ and present a detailed analysis of thealgorithm. The problem we are trying to solve is: given a string �x = x1::xn that was generated byrepeatedly swithing between a number of unknown VMM soures (with some upper bound onthe alternation rate), �nd the most likely number of soures that partiipated in the generationof �x and the most probable segmentation of �x into segments, generated by eah of the soures.The problem is generally omputationally hard, similarly to data lustering. Only very simplesequenes an be segmented both orretly and eÆiently in general (see [FR95, Hof97℄).We approah this problem with hierarhial top-down lustering proedure. Our approahis information theoreti in nature. The goal is to enable short desription of the data by a (soft)mixture of VMM models, eah one ontrolled by an MDL priniple (see [BRY98℄ for a review).The last is done by modifying the original PST algorithm using the MDL formulation, while



Chapter 1: Introdution 5preserving its good learnability properties. The mixture model is then learned via a generalizedrate distortion theory approah (see [CT91, Ch. 13℄). Here we take the log-likelihood of the databy eah model as an e�etive distortion measure between the sequene and its representativemodel and apply the Blahut-Arimoto (BA) algorithm (see [CT91℄) to optimally partition thesequene(s) between the VMM model entroids. Just like in many lustering algorithms we thenupdate the models based on this optimal partition of the sequene(s). In this way a naturalresolution parameter is introdued through the onstraint on the expeted tolerated distortion.This \temperature" like Lagrange multiplier is further used in the deterministi annealing loop(see [Ros98℄) to ontrol the resolution of the model. The hierarhial struture is obtained byallowing the models to split (the re�nement step) after onvergene of the iterations betweenthe BA algorithm and the VMM entroids update. Our model an in fat be viewed as an HMMwith a VMM attahed to eah state, but the learning algorithm allows a ompletely adaptivestruture and topology both for eah state and for the whole model.After desribing and analyzing the algorithm we demonstrate an interesting appliation of thealgorithm in the �eld of protein sequenes lassi�ation. This appliation was widely explored in[BSMT01℄, whih was a natural ontinuation of the [BY01℄ work, where PSTs were shown to bea powerful tool for supervised lassi�ation of proteins. The urrent work extends our abilitiesby allowing to perform this task in unsupervised manner. Charaterization of a protein sequeneby its distint domains (autonomi strutural subunits) is ruial for orret lassi�ation andfuntional annotation of newly disovered proteins. Many families of proteins that share aommon domain ontain instanes of several other domains without any ommon ordering, norwith mandatory presene of the additional domains. Therefore, onventional multiple sequenealignment (MSA) methods (that attempt to align the omplete sequene, see [DEKM98℄) �nddiÆulties when faed with heterogeneous groups of proteins. Their suess ruially dependson the initial (seed) seletion of a group of related proteins, usually hand rafted by experts.Even in the ases when similarities are deteted in an automati way using bottom-up lusteringtehniques [Yon99℄, the system laks the global piture view. The advantage of our algorithm isthat it does not attempt any alignment, but rather lusters together short regions with similarstatistis. As a result it does not require any initial seletion of a group of related proteins, and itis not onfused by di�erent orderings of the domains in the protein sequenes. The lassi�ationis done through revelation of domain signatures - short, highly onserved domain subsegmentsommon to at least small amount of the input proteins.The ontinuation of the work is built in the following way. In Ch. 2 we give some basisfrom the probability, information and learning theories, essential for understanding of our work.In Ch. 3 we de�ne variable memory Markov (VMM) proesses. We then review the algorithmsof [WST95℄ and [RST96℄ for learning of VMM soures and desribe the new algorithm from[SBT01b℄ that approahes this task basing on the MDL priniple. Ch. 4 gives an introdutionto the �eld of unsupervised learning of mixture distributions and reviews some lustering algo-rithms. In Ch. 5 we desribe the new algorithm for unsupervised sequene segmentation from[SBT01b℄. The algorithm embeds the VMM sequene modelling desribed in Ch. 3 into hier-arhial lustering framework desribed in Ch. 4. We also hold a short disussion of the mainpoints of the algorithm at the end of Ch. 5. Ch. 6 demonstrates two interesting appliations ofthe algorithm. The �rst one is unsupervised segmentation of multilingual texts into languages.Here the algorithm was able to infer orretly both the number of languages used and the lan-guage swithing points with a preision of a few letters. We also try to sense the limitations of



6 Chapter 1: Introdutionthe algorithm on this example in the notion of maximal swithing rate it is able to detet andminimal amount of data it needs. The seond appliation shown is unsupervised lassi�ationof protein sequenes. Here the algorithm was able to re�ne the HMM superfamily lassi�ationand to identify domains that appeared in a very small amount of the input proteins. The se-tion inludes the results of [SBT01b, BSMT01, SBT01a℄ works, as well as some new results �rstpresented here (mainly the analysis of the abilities of the algorithm) and some results that didnot enter our previous papers due to spae limitations. Ch. 7 holds a disussion of the algorithmand the results and gives a number of suggestions for further work.



Chapter 2Preliminaries2.1 Essential Conepts from the Probability TheoryIn this setion we are going to give a number of essential de�nitions from the probability theory.Conditional Probability and Bayes FormulaConditional probability is one of the most basi instruments in the probability theory and willbe extensively used in this work. We start with an illustrative example and then will give aformal de�nition.Suppose that we have a population of N people - NM men and NW women. And supposethat NR out of them have read this work. We denote byM , W and R the events that a person isa man, a woman and has read this work respetively. Then (see [Fel71℄) P (M) = NMN ; P (W ) =NWN and P (R) = NRR . Now we an onentrate on the subset of our population ontaining womenonly and ask, what is the probability that a randomly hosen women has read this work. Wedenote the probability of this event by P (RjW ), whih an be read as: \the probability of eventR onditioned on event W" or \the probability of (event) R given (event) W". If NWR is thenumber of women who has read this work, then:P (RjW ) = NWRNWon the other hand: NWRNW = NWRNNWN = P (W \R)P (W )whih means: P (RjW ) = P (W \R)P (W )(Later we will also use a notation P (W;R) for the probability of the intersetion of the eventsW and R.)This brings us to the following de�nition: 7



8 Chapter 2: PreliminariesDe�nition 2.1 Let H be an event with positive probability. Then for every event A we write:P (AjH) = P (A \H)P (H) (2.1)Note, that working with onditional probabilities for a given �xed event H is equivalentto hoosing H as our new spae of elementary events with probabilities proportional to theoriginal ones - P (H) plays here the role of normalization oeÆient. This means that all thebasi theorems on probabilities are valid for onditional probabilities as well. For example:P (A [BjH) = P (AjH) + P (BjH)� P (A \BjH).(2.1) may be rewritten in the form:P (A \B) = P (AjB) � P (B) (2.2)This may be generalized for a sequene of events A1; ::; An:P (A1 \ :: \An) = P ((A1 \ :: \An�1) \An) (2.3)= P (A1 \ :: \An�1jAn) � P (An) = :::= P (A1jA2 \ :: \An) � P (A2jA3 \ :: \An) � :: � P (An�1jAn) � P (An)Suh hain deomposition of the probability will be very useful when we get to the Markovproesses.Now we give one more de�nition that will be used in this hapter:De�nition 2.2 Two random variables A and B will be alled independent, if P (AjB) = P (A).Note, that if P (AjB) = P (A), then P (BjA) = P (A\B)P (A) = P (B)�P (AjB)P (A) = P (B)�P (A)P (A) = P (B).Now let us take a set of non-interseting events H1; ::;Hn, suh that Sni=1Hi overs thewhole probability spae. This means that every event belongs to a single Hi out of H1; ::;Hn.In this ase, for any event A, A = Sni=1(A \ Hi). Using the fat that for i 6= j we haveP ((A \Hi) \ (A \Hj)) = 0 due to the emptiness of the intersetion of Hi with Hj we get:P (A) = P ([(A \Hi)) =XP (A \Hi) =XP (AjHi) � P (Hi) (2.4)From here we straightly get the Bayes formula:P (HjjA) = P (A \Hj)P (A) = P (AjHj) � P (Hj)Pi P (AjHi) � P (Hi) (2.5)If fHig is our hypothesis set, then P (Hi) is alled the prior probability distribution over thehypothesizes and P (HijA) is alled the posterior distribution over the hypothesizes - after weknow that A has happened.Note, that if Hi-s are the states of our world, and A is some observation we have done, thenwe an infer some information about the state of the world we are urrently in. For example, wehave two unfair oins: C1 has a greater probability for \head" and C2 has a greater probabilityfor \tail". Suppose that we have hosen one out of the two oins aording to some priordistribution P (Ci) and made a trial. Then aording to the result we got, we an tell what isthe posterior probability that we have hosen Ci.



Chapter 2: Preliminaries 9Probability DensityWhen talking about ontinuous variables one should onsider probability density funtions. Aprobability density funtion p(x) spei�es that the probability of the random variable X 2 Xlying in the region R � X is given by:P (X 2 R) = ZR p(x)dx(2.1) may be generalized for the density funtions. Let p(x; y) be the joint probability densityfuntion of two random variables X 2 X and Y 2 Y:P ((X 2 RX) ^ (Y 2 RY )) = RRX ;RY p(x; y)dxdy. And let p(y) be the marginal density funtionof Y : p(y) = RX p(x; y)dx. Then denoting by fy(X) the probability density of the randomvariable fXjY = yg, we get: fy(X) = p(X; y)p(y)See [Fel71℄ for a proof.Conditional ExpetationNow we add a notion of onditional expetation.De�nition 2.3 Conditional Expetation E(Y jX = x) is de�ned as:E(Y jX = x) = Xy2Y yp(yjx)We write E(Y jX) when we talk about the onditional expetation as a funtion of X, andE(Y jx) when we talk about its value at spei� point x. Note, that when we talk aboutonditional expetation we assume an existene of the joint probability distribution p(x; y).Jensen's InequalityTheorem 2.1 (Jensen's inequality): If f is a onvex funtion and X is a random variable,then: Ef(X) � f(EX)Moreover, if f is stritly onvex, then equality implies that X = EX with probability 1, i.e. Xis a onstant.See [CT91, page 25℄ for a proof.2.2 Information TheoryInformation Theory originated from the Communiation Theory in the early 1940's and initiallydealt with the questions of data ompression and transmission. The �rst and most importantresults are due to Shanon, who atually founded this �eld of studies ([Sha48℄ and later works).Though being still assoiated with Communiation Theory, Information Theory proved to have



10 Chapter 2: Preliminariesimportant relations to other �elds of study, suh as Thermodynamis in Physis, KolmogorovComplexity in Computer Siene, Eonomis, Probability Theory, Statistis and Mahine Learn-ing. Here we will fous on the last one, while all the rest, as well as a good referene to thewhole theory may be found in [CT91℄.One of the most basi quantities in the information theory is the entropy of a distribution:De�nition 2.4 The entropy H(X) of a disrete random variable X distributed aording to pis de�ned by: H(X) = �Xx2X p(x) log p(x) = E � log p(x) (2.6)We will also write H(p) for the above quantity. In this work we will only use binary entropy,i.e. the log in the de�nition of H is log2, also denoted as lg.Another important quantity we want to de�ne here is relative or ross entropy, also knownas Kullbak-Leibler distane or divergene, suggested in [KL51℄:De�nition 2.5 The Kullbak-Leibler distane between two probability distributions p(x) andq(x) is de�ned as: DKL(pkq) = Xx2X p(x) log p(x)q(x) = Ep log p(x)q(x) (2.7)In the above de�nition we use the onvention (based on ontinuity arguments) that 0 log 0q = 0and p log p0 =1. Note, that DKL is asymmetri (DKL(pkq) 6= DKL(qkp)) and does not satisfythe triangle inequality. Atually, the only property of a metri it satis�es is positivity (see[CT91, page 26℄ for a proof):Theorem 2.2 (Information inequality): For probability distributions p and q, DKL(pkq) � 0with equality if and only if p(x) = q(x) for all x.Nonetheless, it is often useful to think of relative entropy as a \distane" between distri-butions for reasons that will be immediately shown after a sequene of de�nitions related tooding:De�nition 2.6 A soure ode C for a random variable X is a mappingC : X ! f0; 1g�. C(x) denotes the odeword orresponding to x and lC (x) denotes the length ofC(x).The subsript C in lC (x) will be omitted wherever it will be lear whih ode C do we speakabout. In this work we will dial solely with binary odes.De�nition 2.7 The expeted ode length L(C) of a soure ode C is given by:L(C) = Xx2X p(x)l(x) (2.8)De�nition 2.8 Code C is alled uniquely deodable if for every two sequenes x1::xn; y1::ym 2X � suh that x1::xn 6= y1::ym:C(x1::xn) = C(x1)::C(xn) 6= C(y1)::C(ym) = C(y1::ym).



Chapter 2: Preliminaries 11With above de�nitions it may be shown that (see [CT91℄ for a proof):Theorem 2.3 (MMillan): The odeword lengths of any uniquely deodable ode must satisfythe Kraft inequality: Xx2X 2�l(x) � 1If we try to minimize L(C) while onstrained by the Kraft inequality, we derive (using thetehnique of Lagrange multipliers) that the optimal ode lengths l� should satisfy: l�(x) =� lg p(x). Whih implies: L(C) � L(C�) = �P p(x) lg p(x) = H(X), where C� stays for theoptimal ode. We dedued that H(X) is the lower bound on the ode length of X. This isalso an ahievable bound, and there are algorithms (like Hu�man ode) that ahieve: H(X) �L(C) < H(X) + 1. All these odes satisfy: l(x) � d� lg p(x)e.Note, that if we onstrut a ode C for X using a \wrong" distribution q 6= p, we get:L(C) = Eplq(x) = �XX p(x) lg q(x)= �XX p(x) lg p(x) +XX p(x) lg p(x)q(x) = H(p) +DKL(pkq)Thus DKL(pkq) is the penalty per symbol we will pay for hoosing a wrong distribution q whentrying to ode a sequene generated aording to p. This gives us the motivation for taking DKLas a measure of distane between distributions.Another information theoreti quantity we want to de�ne here is mutual information:De�nition 2.9 For two random variables X and Y with joint probability distribution p(x; y)and marginal distributions p(x) and p(y) the mutual information I(X;Y ) is the relative entropybetween the joint and the produt distribution p(x)p(y):I(X;Y ) = Xx2X ;y2Y p(x; y) log p(x; y)p(x)p(y)= DKL(p(x; y)kp(x)p(y))We add a de�nition of onditional entropy :De�nition 2.10 For two disrete random variables X and Y with a joint distribution p(x; y)the onditional entropy H(Y jX) is de�ned as:H(Y jX) = Xx2X p(x)H(Y jx)= �Xx2X p(x)Xy2Y p(yjx) log p(yjx)



12 Chapter 2: PreliminariesWith this de�nition we note that:I(X;Y ) =Xx;y p(x; y) log p(x; y)p(x)p(y)=Xx;y p(x)p(yjx) log p(yjx)p(x)= �Xx p(x) log p(x) +Xx p(x)Xy p(yjx) log p(yjx)= H(X)�H(XjY )Thus the mutual information I(X;Y ) is the redution in the unertainty of X due to theknowledge of Y .2.3 Probability Density EstimationOne of the main problems the learning theory deals with and that will be touhed in thiswork is the problem of probability density estimation. The usual setting for this problem is:given a �nite sample x = x1; ::; xn of independent samples generated by unknown probabilitydistribution (soure) p(x), try to estimate p(x) for the whole probability spae X .There are three major approahes to the density estimation problem. The parametri meth-ods, in whih a spei� funtional form for the density model is assumed, i.e. p(x) = f�(x),where f is some funtion and � is its parameters vetor belonging to a parameters spae �. Forexample, for a normal distribution � = (�; �) 2 <�<+ = �. The drawbak of this approah isthat the partiular form of parametri funtion hosen might be inapable of providing a goodrepresentation of the true density. A di�erent approah is non-parametri estimation whih doesnot assume a partiular form, but allows the form of the density to be determined entirely bythe data. Suh methods typially su�er from the problem that the number of parameters inthe model grows with the data set, so that the model an quikly beome unwieldy. The thirdapproah, sometimes alled semi-parametri estimation, tries to ahieve the best of both worldsby allowing a very general lass of funtional forms in whih the number of parameters an beinreased in a systemati way to build even more exible models, but where the total numberof parameters an be varied independently from the size of the data set. For example, the PSTmodel in Se. 3.2.1 is a semi-parametri one.2.3.1 Maximum LikelihoodBeing the most straightforward approah to the density estimation, the parametri methodassumes that the unknown probability density may be represented in terms of spei� funtionalform whih ontains a number of adjustable parameters. Namely, we think about some funtionf(x; �) suh that for eah �xed �, f�(x) represents a probability distribution, and then we say thatp(xj�) = f�(x), where � is the set of (unknown) parameters. There are two prinipal tehniquesfor determining the unknown parameters � of the distribution given a sample x of independentsamples generated aording to p(xj�). The �rst one, maximum likelihood is disussed here.



Chapter 2: Preliminaries 13To be able to talk about maximum likelihood we de�ne the likelihood of a sample x under�xed parameters set � (and a �xed model f we are investigating):L(x) = L(x1; ::; xnj�) = P (x1; ::; xnj�) = nYi=1 p(xij�)The last equality holds beause x1; ::; xn are generated independently by f�(x) and are thereforeindependent given �.The maximum likelihood tehnique just hooses �ML = argmax�L(x) to be the estimationof the unknown distribution parameter �. In words, the most probable parameter � that wasinvolved in generation of the observed sample is the one that maximizes the likelihood of thesample.2.3.2 Bayesian InfereneNow we turn to desribe the seond tehnique for parameter estimation, named Bayesian In-ferene. We note, that if we hoose p(�) to be our prior distribution over the parameters spae�, then p(x; �) = p(�)p(xj�) is a legal probability distribution over the X n � � spae. p(�)represents our unertainty in the values of the unknown parameters �. Before we see a newsample x, its prior probability in our model is (due to ontinuous version of (2.4)):p(x) = Z� p(xj�) � p(�)d�After we saw the sample our posterior distribution over the parameters p(�jx) beomes (byontinuous version of (2.5)): P (�jx) = p(�) � p(xj�)p(x)Unlike maximum likelihood, whih gives us a spei� value of �, Bayesian inferene providesus with a posterior distribution over the parameters spae �. This distribution may be thenused to predit new samples. By (2.4) we have:p(Xjx) = Z� p(Xj�;x) � p(�jx)d� = Z� p(Xj�) � p(�jx)d�Where the seond equality holds due to independene of X and x given �.2.3.3 Probably Approximately Corret Learning ModelBeing probably the most natural learning approah, Bayesian inferene does not provide us (atleast diretly) with any guaranties on the quality of the answer we found. I.e. we know thatwe found the most likely approximation of the unknown parameter �, but we have no idea ofhow far we are from the atual value of � that generated the sample. Probably ApproximatelyCorret (PAC) model takes this question as a starting point.PAC learning model was suggested by Valiant in [Val84℄. The idea of PAC is to �nd thehypothesis that with high probability will not be too far from the target one. In our ontext ofprobability density estimation we will be mainly onerned with the Kullbak-Leibler distanebetween distributions. We will say that:



14 Chapter 2: PreliminariesDe�nition 2.11 A family P of probability distributions over X is PAC-learnable, if there existsan algorithm A that for every unknown distribution p 2 P, given a suÆient, but at mostpolynomial in 1� and 1Æ , amount of samples generated aording to p, provides a hypothesis q thatsatis�es: P (DKL(pkq) > �) < Æ.We leave A the possibility to err ompletely with probability at most Æ sine the samplegenerated by p may appear to be untypial to p. For example, a fair oin may, though withsmall probability, oasionally generate a long sequene of \all ones".Main results on the possibility of PAC learning are based on Glivenko-Cantelly theorem onthe onvergene of empirial distributions to the atual distribution funtion [Gli33, Can33℄. Thesample eÆieny of the learning proedure (in appropriate ases) is based on Kolmogorov's workon the rate of that onvergene [Kol33℄ and Cherno� and Hoe�ding inequalities [Che52, Hoe63℄.The neessary and suÆient onditions for PAC learning are based on the work of Vapnik andChervonenkis [VC71, VC81℄. A muh more detailed disussion of PAC may be found in [KV94℄or [Vap98℄.2.3.4 Minimum Desription Length PrinipleIn Se. 2.2 we saw that the optimal ode length mimis data generating distribution; namelyl(x) = � lg p(x). Though, if we were wishing to transmit a sequene x1; ::; xn we would have tospeify whih ode C we are using as well. Thus the total number of bits we transmit would be:l(C) + nXi=1 lC (xi) (2.9)where l(C) stays for the length of spei�ation of C.Note, that if we hoose C out of a large family of odes C, then we an �nd C built on theunderlying distribution qC whih will be very lose to the data generating distribution p. In suhase, we will pay low penalty nDKL(pkq) for not being absolutely exat in our estimation of p,but the spei�ation of C will be rather long (if there is an equal probability for hoosing anyC 2 C, the spei�ation of C will take lg jCj bits). This would be espeially ineÆient if we havesmall amount of data n. For hierarhial families of distributions (when subsequent probabilitydensity funtions re�ne the partition of their \parents") it is possible that di�erent hypothesesqC will have di�erent spei�ation lengths l(C); see Se. 3.2.2 for suh example.Minimum Desription Length priniple stays that the optimal hypothesis qC� is the one thatunderlies the ode C� that minimizes (2.9).It may be further shown that:1. If we use Bayesian inferene, then P (xn+1jx1; ::; xn) � P (xn+1jqC� ) up to o(1), thus MDLis a good approximation of the Bayesian inferene (see [BRY98℄).2. In PAC learning setting qC� minimizes the risk that the predition will (signi�antly)disagree with the atual proess outome (see [Vap98℄ for a proof for pattern reognitionproblem).MDL approah has several advantages over the inferene shemes desribed previously. Ifompared to Bayesian inferene, MDL is a good approximation of Bayesian inferene, but at the



Chapter 2: Preliminaries 15same time MDL �nal hypotheses are usually muh more ompat than Bayesian ones. In addi-tion, MDL provides us with a single model and not a mixture of models, whih sometimes is alsoan advantage. If ompared to PAC learning setting, MDL suggests only a single parameter foroptimization - the desription length, that omes instead of � and Æ parameters of PAC learningalgorithms, and still it reahes the same goal - minimization of probability of error. ThereforeMDL is more suitable for unsupervised learning frameworks, where we want to minimize thenumber of parameters externally ontrolled by the user. MDL is also an ultimative tool forrevealing the atual data generating distribution p sine qC� onverges to p as the sample size ntends to in�nity.MDL priniple was suggested in the work of Rissanen [Ris78℄, though it should be noted thatvery similar ideas appeared also in preeding works, like [WB68℄. MDL priniple has very toughrelations to the Kolmogorov omplexity, de�ned in the works of Solomono� [Sol60℄, Kolmogorov[Kol65℄ and Chaitin [Cha66℄. A good referene to MDL priniple is [BRY98℄. [Vap98℄ suggestssome additional bounds from the risk minimization point of view.
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Chapter 3Markov Proesses and SequentialData SouresThis hapter is devoted to single sequential soure modeling. We start with de�nition of Markovand variable memory Markov (VMM) proesses. Then we review some existing algorithms forlearning of VMM soures and �nish with detailed desription of the new VMM soure learningalgorithm from [SBT01b℄.3.1 Markov and Variable Memory Markov ProessesFor a sequene of random variables �X = X1::Xn we may use (2.3) to write the probability ofthe sequene in the following way:P ( �X) = nYi=1P (XijX1::Xi�1)In Ch. 2 we assumed that fXigni=1 are independent variables, i.e. P (XijX1; ::;Xi�1) = P (Xi).But in many ases this assumption appears to be too strit.The Markov assumption is less restritive (see [Fel71℄ for a deeper disussion):De�nition 3.1 A sequene of random variables is said to form a Markov hain, ifP (XijX1; ::;Xi�1) = P (XijXi�1).Here Xi�1 represents the hain \memory", whih in the partiular ase of the de�nition is oflength 1. Alternatively, we may assume that P (XijX1; ::;Xi�1) = P (XijXi�r; ::;Xi�1), gettingmemory of length r. The problem is that for a sequene over an alphabet of size j�j and memoryof length r, the number of onditional distributions we will have to learn is j�jr, limiting us dueto sample size or spae onstrains to very short memory length, whih is not always suÆientto apture all signi�ant long-distane dependenies in the data. The key for suess of theVMMs lies in the observation that out of j�jr possible \memories" usually only few are likelyto frequently appear. For the rest we an su�er even a big mistake (loss) sine the number oftimes this will happen will be small.VMM soure may be represented using a tree of seleted suÆxes of the pre�xes fx1::xi�1gni=1.In [RST96℄ suh tree is alled Predition SuÆx Tree (PST). In [WST95℄ the string xi�r::xi�1 isalled a ontext of xi, and the tree is alled Context-Tree. We will use the following de�nition:17



18 Chapter 3: Markov Proesses and Sequential Data SouresDe�nition 3.2 A Pre�x-SuÆx Tree T over a �nite alphabet � is a j�j-ary tree that satis�es:1. For eah node eah outgoing edge is labeled by a single symbol � 2 �, while there is atmost one edge labeled by eah symbol.2. Eah node of the tree is labeled by a unique string s (a ontext) that orresponds to a 'walk'starting from that node and ending in the root of the tree. We identify nodes with theirlabels and label the root node by the empty string �.See Fig. 3.1 for an illustration of suh tree.De�nition 3.3 sufT (x1::xi�1) is de�ned to be the longest sequene xi�r::xi�1 that makes a pathin T in the following sense: we start from the root and traverse the edge labeled by xi�1, fromthere we traverse the edge labeled by xi�2 et., until there is no appropriate edge to ontinuewith or we have traversed the whole string1. If there is no edge labeled by xi�1 leaving the rootwe say that sufT (x1::xi�1) = �.De�nition 3.4 A Variable Memory Markov (VMM) soure G is a stohasti proess that sat-is�es: PG(xijx1::xi�1) = PG(xijsufT (x1::xi�1)) for some suÆx tree T . T will be alled a sup-porting tree of G.De�nition 3.5 The Minimal Supporting Tree (MST) of a VMM soure G is a supporting treeof G that satis�es: for all T 0 � T , T 0 is not a supporting tree of G2.Theorem 3.1 For eah VMM soure exists a unique MST.Proof 3.1 Let G be a VMM soure. Then, by de�nition, G has a supporting tree T . There isa �nite number of trees T 0 � T , thus a minimal one exists. It is left to show the uniqueness ofthe minimal tree. Suppose that T1 and T2 are two di�erent MSTs of G. Then:1. T1 \ T2 is a supporting tree of G, sine:( PG(xijx1::xi�1) = PG(xijsufT1(x1::xi�1))PG(xijx1::xi�1) = PG(xijsufT2(x1::xi�1))) PG(xijx1::xi�1) = PG(xijminfsufT1(x1::xi�1); sufT2(x1::xi�1)g)= PG(xijsufT1\T2(x1::xi�1))2. T1 \ T2 � T1 and T1 \ T2 � T2, ontraditing the minimality of both. 2In this work we assume that all soures are stationary and ergodi sine these two require-ments are essential for any learning be possible.1Note that we do not neessarily stop at a leaf.2T � T 0 if T may be obtained from T 0 by addition of nodes.



Chapter 3: Markov Proesses and Sequential Data Soures 19De�nition 3.6 A VMM proess is alled stationary, if for eah i; j � 1,P (Xi = �jsufT (x1::xi�1)) = P (Xj = �jsufT (x1::xj�1))whenever sufT (x1::xi�1) = sufT (x1::xj�1).De�nition 3.7 A VMM proess is alled ergodi, if for eah pair of strings s; t, suh thatP (X1::Xjsj = s) > 0, P (Xl::Xl+jsjjx1::xjtj = t) > 0 for some �nite l > jtj.
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(.05,.25,.4,.25,.05 )(.1,.1,.35,.35,.1)Figure 3.1: An example of a PST over the alphabet � = fa; b; k; l; rg. The vetor near eah nodeis the probability distribution for the next symbol. E.g., the probability to observe k after the substringbara, whose largest suÆx in the tree is ra, is P (kjbara) = Pra(k) = 0:4.A natural way to model VMM soure is a PST:De�nition 3.8 Predition SuÆx Tree (PST) T is a Pre�x-SuÆx Tree with the following prop-erty:1. A probability distribution vetor over � is assoiated with eah node s 2 T .Ps(�) � P (�js) is the probability that letter � will ome after a string s.See Fig. 3.1 for an illustration of PST.It may be shown that when Ps(�) is de�ned to be Ps(�) = the number of times �s ourred in �xthe number of times s ourred in �xfor some string �x and with proper handling of the end points of �x, the distributions Ps(�) satisfythe marginal ondition: Ps(�) = P�̂2� PT (�̂s)PT (s) P (�j�̂s), where PT (s) is as de�ned below and �̂sis a pre�x extension of s (see [RST96℄). This means that the omplete set of distributions Ps(�)is stationary.Prediting and Generating using PSTsHere we de�ne the probability measure that a PST T indues on the spae of all strings �x =x1::xn 2 �n, for any given n. Given a string �x 2 �n and a PST T the probability that �x wasgenerated by T is: PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)



20 Chapter 3: Markov Proesses and Sequential Data SouresWhen T is used as a generator, it generates a symbol xi aording to the distributionPsufT (x1::xi�1).3.2 Learning Variable Memory Markov SouresIn this setion we review the algorithms from [RST96℄ and [WST95℄ for VMM soure learningand then desribe the new algorithm from [SBT01b℄ that will be used in this work.3.2.1 PAC Learning of the VMM SouresIn [RST96℄ a PAC algorithm for VMM soure learning was proposed. The algorithm works inthe following way. As an input it gets a string �x (or a set of strings) generated by the exploredsoure, preision and on�dene parameters �, Æ and maximal assumed depth of the MST of thegenerating soure L. For eah substring s of length jsj � L the empirial probability of s, ~P (s),is de�ned to be the number of times s appeared in �x divided by j�xj � L � 1 - the number oftimes s ould appear in �x. For eah letter � 2 � the empirial probability of � to ome after s,~Ps(�), is de�ned to be the number of times � appeared after s in �x divided by the number ofourrenes of s. The output of the algorithm is a PST that with probability of at least 1 � Æis �-lose (in the DKL pseudo-metris) to the original soure. The �nal tree is a olletion of allnodes that satisfy:1. jsj � L2. ~P (s) is greater than some lower bound that is a funtion of �, Æ and j�j.3. For eah node �̂s there is � 2 � suh that ~P (�j�̂s) di�ers signi�antly from ~P (�js), orthere is a desendant ŝ�̂s of �̂s for whih ~P (�jŝ�̂s) di�ers signi�antly from ~P (�js). Thesigni�ane is a funtion of �, Æ and j�j.Smoothing of probability distributions in the nodes of the �nal tree T is done to avoid zeroprobabilities. The PAC property of the algorithm is proved in [RST96℄. A linear time and spaealgorithm to �nd T was proposed in [AB00℄.3.2.2 Bayesian Learning of the VMM SouresIn [WST95℄ a Bayesian approah to VMM soure learning was proposed. The input to thealgorithm is a binary string generated by the explored soure (generalization to �nite alphabetis disussed elsewhere) and the assumed maximal depth L of the MST of that soure (thisassumption was eliminated in [Wil98℄). The output is a weighted ombination of all possibleontext trees of depth not greater than L (over all possible trees in [Wil98℄).The prior probability of a tree T is inverse proportional to the exponent of the desriptionlength of T . In their oding sheme, [WST95℄ for eah node s of T ode the existene of sons ofs: for eah �̂ 2 � the bit of �̂ in s is 1, if �̂s 2 T and 0 otherwise3. Thus the desription lengthof the tree skeleton is j�j � jT j, where jT j is the number of nodes in T . For eah tree T and foreah node s, ~Ps(�) is de�ned to be: ~Ps(�) = ~Ns(�)+ 12~N(s)+ 12 j�j , where ~N(s) is the empirial number of3s 2 T means that s is a node in T



Chapter 3: Markov Proesses and Sequential Data Soures 21ourrenes of s in �x, ~Ns(�) is the empirial number of times � appeared after s in �x and 12omes from the usage of Krihevsky-Tro�mov (KT) estimators (see [KT81℄) whih ensure goodbounds on the distane between ~Ps(�) and the real distribution Ps(�) for small sample sizes.All the trees are stored in one omplete j�j-ary tree of depth L. An eÆient proedure forsimultaneous update of ~Ps(�) for all the trees as well as an eÆient proedure for weighting ofthe preditions of all the trees is desribed in [WST95℄. Both proedures run in time linear inL. It is shown in [Wil98℄ that when no assumptions on the tree depth are made (i.e. we use thealgorithm from [Wil98℄) or when L is greater or equal to the depth of the MST of the generatingproess, the entropy H(PT (XijX1::Xi�1)) onverges to the entropy of the generating soure withprobability 1 as the sample size n tends to in�nity.3.2.3 MDL Learning of the VMM SouresNow we turn to desribe the new MDL driven algorithm for PST training from [SBT01b℄. Thealgorithm has the advantages of both PAC and Bayesian algorithms we have just desribed:1. The algorithm gets no parameters and thus perfetly suits for unsupervised learning thatwill be disussed starting from the next hapter.2. The resulting (and intermediate) tree is very ompat. Thus it is very handful for workwith strings over large alphabets and in the ases when we have multiple models (seeCh. 5).In addition:3. Being built on MDL priniples, the algorithm reveals the most likely MST of the generatingproess, whih may be interesting on its own.4. The algorithm was generalized to handle weighted data. This extension will be neessarywhen we will start working with multiple models, but it may be also useful for single modelsetting in the ases when we have di�erent levels of on�dene in our input data.The inputs to the algorithm are a string �x = x1::xn and a vetor of weights �w = w1::wn,where eah wi is a weight assoiated with xi (0 � wi � 1)4. We will denote w(xi) � wi. Youmay think of w(xi) as a measure of on�dene we give to the observation xi. For now you mayassume all wi = 1 (this orresponds to the simple ounting setting we had in the previous twoalgorithms).For a string s we say that sxi 2 �x if sxi is a substring of �x ending at plae i. We de�ne:ws(�) � Xxi=� and sxi2�xw(xi)and w(s) � X�2�ws(�)4Generalization to a set of strings is straightforward and therefore omitted here for ease of notation. See[RST96℄ for an example of suh generalization on the original algorithm.



22 Chapter 3: Markov Proesses and Sequential Data SouresLearn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Reursively for eah s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)1. For eah � 2 � suh that �s 2 T :(a) Prune(�s)(b) If TotalSize(T�s) > H(Ps) �w(�s) ThenDelete subtree T�sFigure 3.2: The PST learning algorithm.Clearly ws(�)w(s) is an empirial estimate for Ps(�). We smooth the probabilities by using theKT-estimators for the same reasons as in [WST95℄.As desribed in Ch. 2, the idea behind the MDL is to minimize the total length (in bits) ofmodel desription together with the ode length of the data when it is enoded using the model.The oding of the tree skeleton takes j�j bits per node as in [WST95℄. In addition we shouldode the probability distribution vetors fPs(�)gs2T . Note, that the distribution vetor Ps isused to ode only those xi-s, for whih sufT (x1::xi) = s. Thus the total amount of data that isoded using Ps is at most w(s), and exatly w(s) for the leaf nodes. In order to ahieve minimaldesription length of the vetor Ps together with the fration of the data that is oded usingPs the ounts ws(�) should be oded to within auray of pw(s) (see [BRY98℄). Eah node sholds j�j of suh ounts, thus the desription size of s is:Size(s) = j�j+ j�j2 � lg(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)When oding data \passing through" node s 5:1. If sufT (x1::xi�1) ends with �̂s for �̂s =2 T , then xi is oded using Ps and the average odelength of xi is H(Ps). This will happen w(�̂s) times out of w(s) times we visit s.2. If �̂s is present in T , then xi is oded aording to distribution of some node in T�̂s, andthe average ode length will be the entropy of the distribution in that node. This will alsohappen w(�̂s)w(s) out of times we visit s.5sufT (x1::xi�1) ends with s



Chapter 3: Markov Proesses and Sequential Data Soures 23Thus the entropy of Ts satis�es the reursive de�nition:H(Ts) = X�̂s2T w(�̂s)w(s) �H(T�̂s) + X�s=2T w(�̂s)w(s) �H(Ps)And the ode length of data \passing through" s is w(s) �H(Ts).Summing this altogether we get the desription length:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whih is the total desription length of the whole treetogether with all oded data (as all data passes through the root node �). The algorithm worksin two steps (see Fig. 3.2):In step I we extend all the nodes that are potentially bene�ial, i.e. by using them we mayderease the total size. Clearly only those nodes whose desription size is smaller than the odelength of data passing through them when that data is oded using the parent node distributionare of interest.In step II the tree is reursively pruned so that only truly bene�ial nodes remain. If a hildsubtree T�s of some node s gives better ompression (respeting its own desription length) thanthat of its parent node, that subtree is left, otherwise it is pruned.
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Chapter 4Unsupervised Learning andClustering Algorithms4.1 Mixture ModelsUp to now we have talked about modeling and learning of single soure soures. Now we assumethat our soure G is a olletion of soures G1; ::; Gk. We also assume that G has a distributionP (Gj) over its sub-soures. The data points are generated by G in the following way: �rst wehoose a sub-soure Gj aording to P (Gj) and then we let Gj to generate a new data point.The resulting mixture distribution is given by:p(x) = kXj=1P (Gj) � p(xjGj)In this hapter we are going to survey the existing methods for learning of mixture distributions.Learning of mixture distribution inludes:1. Inferring the number of mixture omponents k.2. Learning eah of the soures (�nding p(xjGj)).3. Learning the distribution over the sub-soures P (Gj).4. For eah data point determining, whih sub-soure has most probably generated it.A set of points that were generated by the same sub-soure will be alled a luster. Thus,the proedure of separation of x = x1; ::; xn into subsets that most probably emerged from thesame sub-soure is alled lustering.Note, that sometimes two di�erent mixtures may provide the same output distribution p(x).For example, for a mixture of two oins, where at eah step we randomly with probability(0:5; 0:5) hoose one oin, ip it and write down the result, the output distribution of a pair(mixture) f(0:4; 0:6); (0:6; 0:4)g and a pair f(0:3; 0:7); (0:7; 0:3)g will be the same. So, by lookingat the result we will not be able to distinguish between the two. This problem is alled uniden-ti�ability of a mixture (see [YS68, DHS01℄). While we will not enter into disussion of this25



26 Chapter 4: Unsupervised Learning and Clustering Algorithmsquestion here, it should be mentioned that the algorithm desribed in Se. 4.3 will return theminimal mixture that desribes the sample best as the most probable one, as will be desribedthere (e.g. in the given example it will be the mixture of one oin with (0:5; 0:5) distribution).4.2 Expetation MaximizationThe �rst proedure for learning of mixture distributions we are going to desribe here is the Ex-petation Maximization (EM) algorithm, suggested in [DLR77℄ (see also [MK97℄ for an overview).EM is a general framework for learning from inomplete data. In the ase of learning of mix-ture distributions, the inomplete (or missing) data is the orrespondene between the pointsx1; ::; xn and the sub-soures they emerged from. Given that orrespondene we ould learn eahsoure separately using some tehnique from Ch. 2.The EM algorithm aims to �nd the mixture that will maximize the likelihood L(xj�) of thedata. � represents here the omplete set of parameters of the mixture. It should be noted, thatin most non-trivial ases EM is not guaranteed to �nd the global optimum, but only a loal one.In the ontext of lustering the EM algorithm works in the following way. It is assumedthat the number of mixture omponents k is known. We denote by fxi 2 Gjg the event thatxi was generated by the sub-soure Gj . The events fxi 2 Gjg are our hidden parameters. Themaximization of the likelihood of the observation L(xj�) is equivalent to maximization of thelog likelihood: logL(xj�) = log p(x1; ::; xnj�) = nXi=1 log p(xij�)The last equality follows from the independene assumption we return to in this hapter.In order to ease the notations we will talk about maximization of log p(xj�). The reader mayeasily see that the summation over i, Pni=1, may be added before eah term in the equations weare going to have here.We an write: p(x; x 2 Gj j�) = p(xj�) � p(x 2 Gj jx; �) (4.1)We add one more simpli�ation and write: p(x 2 Gj jx; �) = p(Gj jx). (Conditioning on �, whilealways present, is omitted for better readability and the event fx 2 Gjg is written simply asGj .) By taking p(Gj jx) to the seond side of (4.1) and applying log we get:log p(xj�) = log p(x;Gj j�)� log p(Gj jx) (4.2)Note also, that p(x;Gj j�) = p(Gj j�) � p(xjGj ; �) = P (Gj) � p(xjGj) (4.3)We may always write:log p(xj�) = log p(xj�)Xj p(G0j jx) = Ep(G0j jx) log p(xj�)Applying the same to the seond side of (4.2) and substituting (4.3) we get:Ep(G0j jx) log p(xj�) = Ep(G0j jx) logP (Gj)p(xjGj)�Ep(G0j jx) log p(Gj jx)



Chapter 4: Unsupervised Learning and Clustering Algorithms 27Put an attention that we took the expetation over some other mixture �0 with sub-soures G0j .If we have an algorithm to �nd �0 suh thatEp(G0j jx) logP (G0j)p(xjG0j) � Ep(G0j jx) logP (Gj)p(xjGj) (4.4)then: log p(xj�0)� log p(xj�)= Ep(G0j jx) logP (G0j)p(xjG0j)�Ep(G0j jx) logP (Gj)p(xjGj)+Ep(G0j jx) log p(G0j jx)�Ep(G0j jx) log p(Gj jx)� DKL[p(G0j jx)kp(Gj jx)℄ � 0Indeed, the idea of EM is to start with some initial guess �0 and then iteratively �x �m and�nd �m+1 suh that (4.4) holds when we think of �m as � and �m+1 as �0. Due to monotoniinrease of log p(xj�) the algorithm is ensured to onverge to some loal optimum.All we left to do is to de�ne p(Gj jx) in order to be able to ompute and maximizeEp(G0j jx) logP (G0j)p(xjG0j). There are a number of ways of de�ning p(Gj jx). Ifp(Gj jx) = ( 1 if 8j0 p(xjGj) � p(xjGj0)0 otherwisewe get the k-means lustering algorithm. And ifp(Gj jx) = P (Gj)p(xjGj)�Pj0 P (Gj0)p(xjGj0)�we get the fuzzy k-means lustering algorithm (see [DHS01℄). Note, that for � = 1 the abovede�nition oinides with the Bayesian de�nition of p(Gj jx).We will return to the question of de�nition of p(Gj jx) in the next setion.4.3 Clustering from the Information Theoreti Point of ViewThe drawbak of the EM algorithm is that it \gets stuk" in the �rst loal maximum, losestto the initial guess �0. It is ommon to run the EM multiple times with random initial startingpoints to ope with this problem, but this may still give little improvement for likelihood fun-tions p(xj�) riddled with loal maxima (as a funtion of �). In addition, EM does not solve theproblem of determining the number of omponents in the generating mixture.What we would like to do is to work at inreasing levels of resolution. When working atlow resolution we will look on a smoothed likelihood funtion that will have muh less loalmaxima - hopefully just one. Finding this maximum (with EM-like proedure) will bring us tothe highest region of the likelihood funtion. By slowly inreasing the resolution we will \getup" in that area and, with a bit of luk, get to the real optimum of the likelihood funtion. Ofourse, we are not provided with any guarantees to �nd the global optimum, but many loaloptima will be automatially avoided, taking us to qualitatively new levels of solutions.In this setion we are primarily fousing on the negative log likelihood funtion � log p(xj�).Note, that maximization of p(xj�) is equivalent to minimization of � log p(xj�). Fig. 4.1 shows
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Figure 4.1: Working at inreasing levels of resolution - an illustrative example. Thebottom urve is the negative log likelihood funtion � log p(xj�) as a funtion of �. Curvesabove it are the negative log likelihood funtion at dereasing levels of resolution (smoothing ofthe original one). The bold line is an imaginary searh path that starts at a random � at lowresolution and goes down the negative log likelihood funtion while inreasing the resolution asit gets to a loal minima at the urrent level.an illustrative example of our attitude to minimization of � log p(xj�), and Fig. 4.2 gives anintuitive example of potential vulnerability of the method.In what is following we are going to desribe the deterministi annealing framework thatrealizes the desribed attitude to lustering. But before this we review some more basis fromthe Information Theory.4.3.1 Rate Distortion TheoryThe idea of rate distortion theory was introdued by Shanon in his original paper [Sha48℄.Rate distortion theory deals with the question of optimal quantization of random variables.Unlike in Ch. 2 and 3, where we dealt with loss-less ompression, this time we are allowed to(slightly) distort the oded information in the meaning that the output of the deoder may benot exatly the input of the enoder. Therefore quantization is also alled lossy ompression.In this problem setting we have a vetor of independent identially distributed (i.i.d) randomvariables x = x1; ::; xn 2 X n, generated by a stohasti soure. The goal is to ode (represent)the sequene with an estimate x̂ = x̂1; ::; x̂n 2 X̂ n that will optimize a ompound riterion onthe size of X̂ and the quality of subsequent deoding of x̂ (or simply the distane between x and
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Figure 4.2: Working at inreasing levels of resolution - potential vulnerability. Narrowdeep minima of the negative log likelihood funtion may be missed up when working at inreasinglevels of resolution, as may be intuitively seen in this example.x̂). This riterion will be given immediately after a sequene of de�nitions that form the ratedistortion theory.De�nition 4.1 A distortion funtion or distortion measure is a mappingd : X �X̂ ! <+. The distortion d(x; x̂) is a measure of the ost of representing x 2 X by x̂ 2 X̂ .De�nition 4.2 The distortion between sequenes x = x1; ::; xn and x̂ = x̂1; ::; x̂n is de�ned byd(x; x̂) = 1nPni=1 d(xi; x̂i).De�nition 4.3 A (2nR; n) rate distortion ode onsists of an enoding funtionfn : X n ! f1; ::; 2nRgand a deoding (reprodution) funtiongn : f1; ::; 2nRg ! X̂ nThe distortion assoiated with (2nR; n) ode is de�ned as:D = Ep(X)d(X; gn(fn(X)))



30 Chapter 4: Unsupervised Learning and Clustering AlgorithmsDe�nition 4.4 A rate distortion pair (R;D) is said to be ahievable if there exists a sequeneof (2nR; n) rate distortion odes (fn; gn) withlimn!1Ep(X)d(X; gn(fn(X))) � D.De�nition 4.5 The rate distortion region for a soure is the losure of the set of ahievablerate distortion pairs (R;D).De�nition 4.6 The rate distortion funtion R(D) is the in�mum of rates R suh that (R;D)is in the rate distortion region of the soure for a given distortion D.We also de�ne: hdi = Xx2X ;x̂2X̂ p(x)p(x̂jx)d(x; x̂)In [CT91℄ you may �nd a proof that:R(D) = minp(x̂jx):hdi�D I(X; X̂) (4.5)Here X̂ is �xed. The equation says that the optimal assignment probabilities p(x̂jx) are thosethat minimize the mutual information between x and x̂, while keeping on the desired level ofdistortion. Suh assignment satis�es the distortion onstraint on p(x̂jx), but makes no otherassumptions (or onstrains) on the relation between x and x̂, and thus it is the most probableone.The optimal assignment probabilities may be found with the Blahut-Arimoto (BA) alternat-ing minimization proedure. The proedure starts with an initial guess of p(x̂) and � and theniteratively repeats the alulations:p(x̂jx) = p(x̂)e��d(x;x̂)Px̂0 p(x̂0)e��d(x;x̂0) (4.6)p(x̂) = Xx2X p(x)p(x̂jx) (4.7)until their onvergene.This algorithm was suggested by Blahut [Bla72℄ and Arimoto [Ari72℄ and proved to onvergeto the rate distortion funtion by Csiszar [Csi74℄. The distortion onstraint D is replaed inthe alulations by orresponding Lagrange multiplier �. By hoosing � appropriately we answeep out the R(D) urve. See [CT91, Ch. 13℄ for a more detailed disussion of the algorithmand the theory in whole.4.3.2 Rate Distortion and ClusteringNote, that what we have just done was a partition of X into jX̂ j lusters with \soft" assignmentof eah point x 2 X to eah luster x̂ 2 X̂ : p(x̂jx) = p(x 2 x̂). The Lagrange multiplier �plays the role of resolution parameter - for small � the atual distane d(x; x̂) has low inueneon p(x̂jx), while for � tending to in�nity we onverge to the hard partition of the data, the soalled \winner takes all" (see de�nition of the assignment probabilities in (4.6)).



Chapter 4: Unsupervised Learning and Clustering Algorithms 31Also, note that X̂ need not neessarily be a subspae of X . We may take X̂ to be a set ofdata generating models over X , and de�ne d(x; x̂) to be � log px̂(x). For example, if we workwith points in <n, X̂ may be a olletion of Gaussians. The reason for taking � log px̂(x) as ourdistane measure is that if we measure a distane of a set of i.i.d. data points from a soure, wewill get: d(x1; ::; xn; x̂) = � log px̂(x1; ::; xn) = � logQi px̂(xi) = Pi� log px̂(xi) = Pi d(xi; x̂i).I.e. the distanes are summing up as we would like them to behave.Now assume that we have an algorithm to �nd the most likely model for a weighted dataset. The algorithm �nds: x̂� = argminx̂0 Xi p(x̂jxi)d(xi; x̂0)where p(x̂jxi) are the weights. (Put attention that the weighting is over �xed weights p(x̂jxi),and that learning proedure returns a new model x̂�.) Then for our distane measure:x̂� = argminx̂0 Xi p(x̂jxi)d(xi; x̂0) = argminx̂0 Xi p(x̂jxi) � (� log p(xijx̂0))= argmaxx̂0 Xi p(x̂jxi) log p(xijx̂0)Whih gives us an inequality:Xi p(x̂jxi) log p(xijx̂�) �Xi p(x̂jxi) log p(xjx̂) (4.8)Realling from the previous setion that: log p(xj�) = log p(x̂)p(xjx̂) � log p(x̂jx) = log p(x̂) +log p(xjx̂)� log p(x̂jx), and observing that at this point p(x̂�) = p(x̂) we get:Xi [log p(xij��)� log p(xij�)℄=Xi [log p(x̂�) + log p(xijx̂�)� log p(x̂�jxi)� log p(x̂)� log p(xijx̂) + log p(x̂jxi)℄=Xi X̂x [p(x̂jxi)(log p(xijx̂�)� log p(xijx̂)) + p(x̂jxi)(log p(x̂jxi)� log p(x̂�jxi))℄= X̂x [Xi p(x̂jxi)(log p(xijx̂�)� log p(xijx̂))℄ +Xi DKL[p(x̂jxi)kp(x̂�jxi)℄ � 0Thus we have proved a monotoni inrease in the likelihood funtion. This means that if westart from some initial guess of fx̂jg and iteratively �x the set we have and �nd a new set fx̂�jgthat will satisfy (4.8) we will onverge to some loal optimum of the likelihood funtion, likein EM. The essene of rate distortion based lustering is that we do not try to �nd the mostlikely model for the data, but rather optimize the rate distortion funtion, while this time weare allowed to manipulate not only with the assignment probabilities p(x̂jx), but also with themodels (or entroids) x̂ themselves. This way the expression we try to optimize is:minfx̂g;p(x̂jx):hdi�D I(X; X̂ )whih makes us to de�ne the assignment probabilities p(x̂jx) by (4.6).



32 Chapter 4: Unsupervised Learning and Clustering AlgorithmsThere is one important point in rate distortion based lustering we want to mention here.For eah level of distortion D there is a �nite number of models K(D) that are required in orderto desribe x at distortion not greater than D. (De�nitely K(D) � n, where n is the size of oursample.) If we start our lustering proedure with k > K(D) models, at the end of the lusteringwith high probability some of the models will unite together (oinide) or remain with no data(no data points will be assigned to those models), leaving us with K(D) \e�etive" - distintand non-empty models. This happens due to the following reason. Our optimization goal maybe written as:R(D) = minx̂;p(x̂jx):hdi�D I(X; X̂) = minH(X) �H(XjX̂) = H(X)�maxH(XjX̂)= H(X) �max Xx2X ;x̂2X̂ �p(xjx̂) log p(xjx̂) = H(X) + minXx;x̂ p(xjx̂) log p(xjx̂)Due to the onavity of the � log� funtion by Jensen inequality:(p(xjx̂1) + p(xjx̂2)) log(p(xjx̂1) + p(xjx̂2)) � p(xjx̂1) log p(xjx̂1) + p(xjx̂2) log p(xjx̂2)And equality holds i� p(xjx̂1) = p(xjx̂2) or one of p(xjx̂1); p(xjx̂2) is zero. Thus, uni�ation orelimination of lusters (x̂1 and x̂2) redues the mutual information I(X; X̂) making solutionswith lower number of distint lusters more preferable whenever those solutions ahieve therequired level of distortion. A more detailed disussion of this phenomenon may be found in[Ros98℄.4.3.3 Hierarhial Clustering through Deterministi AnnealingDeterministi annealing (DA) is a general framework that enables lustering at inreasing levelsof resolution as was desribed at the beginning of this setion. DA does not require informationabout the number of models in a mixture, but rather �nds the most likely one, thus solving theproblem we ould not solve with regular EM. DA teahes us to at in the following way.We start with low initial value of the resolution parameter � and train a single model usingall the data we have. Note, that low value of � orresponds to high level of permitted distortionD, thus for � small enough one luster will suÆe to desribe x at the required level of distortion.Then we reate two opies of our model and perform random, usually asymmetri, pertur-bations on eah of the opies. We will all this operation split.With the two models we got after split we run the rate distortion based lustering as desribedin the previous subsetion. As mentioned there, at the end of the lustering we may remainwith two di�erent, two idential or one empty and one \full" models.The last two ases mean that we have reahed the essential number of models, required todesribe x at the urrent level of distortion D(�), and there is nothing to further look for at theurrent value of �. Therefore we unite all oiniding and remove all empty models, inrease �,split all the models we have at hand and repeat lustering with the new set of models we got.If after lustering the number of e�etive models did inrease, this means that we possiblyhave not reahed yet the limit required at the urrent level of resolution. Therefore we uniteall the oiniding models and eliminate all empty models as previously, but return to lusteringwithout inreasing �.



Chapter 4: Unsupervised Learning and Clustering Algorithms 33Clusters that do not split up over long ranges of � are stable lusters (after we split theluster representative model and run the lustering proedure, the two opies either return tobe together or one of the models is \pushed out" and the seond one takes all the samples ofthe parent model). Stable lusters arry important information on the statistial struture ofour sample, and in partiular on the underlying mixture model.Note, that the history of splits forms a tree hierarhy of models for our sample. We startwith a single model at the root of that tree and repeatedly split our model (and orrespondinglyour sample), optionally till the limit when eah point in the sample is represented by a separateluster. This way of lustering is alled hierarhial top-down or divisive lustering, as opposedto hierarhial bottom-up or agglomerative lustering where we start from the limit of taking eahpoint to be a separate luster and repeatedly unite lusters together until we get one big lusterfor the whole data (see [DHS01℄ for an example of suh algorithm). Obviously, the approahdesribed here is highly preferred on the agglomerative lustering in the ases when we have alarge sample that splits into few large lusters we are interesting to �nd out.To avoid dupliations, a pseudoode for the algorithms desribed in this hapter will be givenin the next one together with our algorithm. A more detailed disussion of DA may be foundin [Ros98℄.
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Chapter 5Unsupervised SequeneSegmentation5.1 Problem FormulationAt this point we are �nally ready to disuss the main issue of this work - the unsupervisedsequene segmentation problem. Our input is a string �x = x1::xn that was generated by amixture fT �j gk�j=1 of VMM models in the following way. At eah partiular point xi of �x onlyone soure was ative. Eah soure was allowed to generate a number of onsequent symbolsand only then, at a random time i, it was swithed by another soure that was possibly alreadyative in the preeding segments of �x. Our assumptions are:1. We do not know the number of soures k�.2. We do not know the soures fT �j g.3. We do not know at whih plaes of �x whih soure was ative.4. We assume that when some soure T �j is ativated, it is ativated for signi�antly longperiod of time, so that the generated segment will be \long enough". Long enough meansthat if we had the models fT �j gk�j=1, we ould say with very high on�dene that the sub-sequene was generated by Tj and not by any other soure (we will all this propertydistinguishability of the model on the segment).5. We assume that the total length of the segments generated by eah soure is suÆientto build a \good" model of that soure. A model is good if using that model we andistinguish the orresponding soure from all other soures on eah separate segment itgenerated.It is easy to see the orrelation between the assumptions 4 and 5: if we have more data we andistinguish between the same soures at higher alternation rates.Our goal is:1. To infer the most likely number of mixture omponents k.2. To build a model Tj for eah omponent of the mixture.35



36 Chapter 5: Unsupervised Sequene Segmentation3. To partition the sequene into segments, when eah segment was (most likely) generatedby a single mixture omponent and identify that omponent.Of ourse, the main goal is to get the segmentation as lose as possible to the original one.5.2 Unsupervised Sequene Segmentation AlgorithmWe approah the problem desribed above with our new algorithm for unsupervised sequenesegmentation, �rst presented in [SBT01b℄ . The algorithm is based on the observation that withPSTs we have:1. Models that indue probability distribution over sub-strings of �x.2. An algorithm for training a new model given a string �x and a vetor of weights �w (seeSe. 3.2.3).Thus we may use the deterministi annealing framework desribed in Se. 4.3 to �nd thenumber of soures that generated �x, to model the soures themselves and to obtain the mostlikely segmentation of �x that will emerge from lustering of the elements of �x, xi-s, taken intheir ontext in �x.We de�ne the distane between a symbol xi and a PST model Tj to be negative log likelihoodTj indues on a window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1)The role of the window is to smooth the segmentation and to enable reliable estimation of thelog likelihood. Note that in order to explore the struture of a soure Tj we need it generateontinuous segments. If we were swithing soures too frequently, we would not see the timedependenies PTj (xijx1::xi�1) of eah spei� soure, but rather get an unidenti�able mixture.With the smoothing window xi-s lose in spae (i.e. with small di�erene in i) will with highprobability be lose to the same model Tj sine their windows will signi�antly overlap.It should be mentioned that taking a window entered on xi instead, for example taking awindow of a form xi�(2M+1)::xi, on pratie improves the performane at least by a fator oftwo in the sense that we may distinguish between the same soures when they alternate twiemore frequently. The point of transition is also better determined with a symmetri window;with asymmetri one it is shifted to the side opposite to the \mass enter" of the window.Having de�ned the distane between a symbol and a model we may �nd the optimal assign-ment probabilities P (Tj jxi) (when xi is viewed in its ontext in �x) for a �xed set of PST models.We denote the set by T � fTjgkj=1. Of ourse, the optimality is relatively to the distane mea-sure we have hosen, sine we optimize (4.5). The assignment probabilities are obtained throughthe Blahut-Arimoto alternating minimization proedure desribed in Se. 4.3.1 - see Fig. 5.1 fora pseudoode. Here 1nPni=1 is an empirial approximation of the expetationPx2X p(x) in (4.7).As in Se. 4.3 we improve our lustering by allowing retraining of the PST models (update ofthe entroids of the lusters); the number of models is still hold �xed. We de�ne wji � P (Tj jxi),thus �wj = wj1::wjn is a vetor of weights assoiated with �x and a model Tj. For model retraining



Chapter 5: Unsupervised Sequene Segmentation 37Blahut-Arimoto(P (T�), �)Repeat until onvergene:1. 8i; j : P (Tj jxi) = P (Tj)e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Figure 5.1: The Blahut-Arimoto algorithm.Soft Clustering(T , P (T�), �)Repeat until onvergene:1. Blahut-Arimoto(P (T�), �)2. 8j : Tj = Learn PST(�x, �wj)Figure 5.2: Soft Clustering proedure.we use the MDL-based algorithm for PST learning desribed in Se. 3.2.3. Clustering is donethrough yet another alternating minimization proedure, as desribed in Se. 4.3.2. The softlustering starts with some initial guess of the models set T and a prior distribution over T ,P (T�). Then we alternatively �x the models and �nd the assoiation probability vetors f �wjgkj=1,delete all the models we have and train a new set of models (of the same size) using the assoiationprobability vetors we got (see Fig. 5.2).We remind that as desribed in Se. 4.3.2, for eah level of resolution � there is a �nitenumber of models K(�), required to desribed �x at distortion bounded by D(�). If we startour soft lustering with k > K models, at the end of it we will remain with only K ativemodels. While in the ase of Gaussians lustering the number of e�etive models dereases dueto uni�ation of lusters, in sequene segmentation the more frequent event is a disappearaneof a luster (luster representative model remains with no data assigned to it). This is ausedby the usage of the averaging windows in the de�nition of our distane measure. Models havingsmall amounts of data slowly loose their \weight" in all the windows and the ompetement overthe windows pushes them out.The only thing left on our way to embedding of our lustering algorithm in the deterministiannealing framework is a de�nition of the proedure for splitting of the PSTs in T . This isdone in a rather simple manner (see Fig. 5.3). For eah PST T in T we reate two opies of Tand perform random antisymmetri perturbations of the ounts vetors in eah node of the twoopies. Then we replae T with the two obtained PSTs while distributing P (T ) equally amongthem.



38 Chapter 5: Unsupervised Sequene SegmentationSplit PSTs(T , P (T�))Replae eah Tj in T by two new models:1. Start with two exat opies of Tj : Tj1 and Tj22. For eah node s in Tj and for eah � 2 �:(a) Selet f� = 1; � = 2g or f� = 2; � = 1g with probability 12 /12 .(b) Perturb and renormalize the ounts vetors:For Tj� : ws(�) = (1 + ) � ws(�) (jj � 1)For Tj� : ws(�) = (1� ) � ws(�)3. P (Tj1) = 12P (Tj); P (Tj2) = 12P (Tj)Figure 5.3: The Split proedure.Now we are �nally ready to outline the omplete algorithm. We start with T inluding asingle \average" PST T0 that is trained on the whole sequene �x with w(xi) = 1 for all i. Wethen pik an initial value of �, split T and proeed with the soft lustering proedure that isinitialized with the two models we got after split. We then split T again and repeat. If a modelis found to have lost all its data it is eliminated 1. When the number of e�etive models stopsinreasing we inrease � and repeat the whole proess.We ontinue to inrease � till the limit when the lusters beome just one window size.This orresponds to the limit when eah point is a separate luster sine the window size is themaximal resolution we an ahieve.See Fig. 5.5 for a pseudoode of the algorithm and Fig. 5.4 for a shemati desription.5.3 RemarksAlgorithm's limitationsAs already mentioned in Se. 5.1, the input string should have enough data to build reasonablemodels for eah of the soures. The alternation between soures should not be faster than theone we an distinguish with the models if were built from the data in a supervised fashion. I.e.if someone was giving us the true segmentation of the sequene and we were training a set ofmodels, eah on its segments of the data, those models would be well distinguishable on thesegments of the true segmentation.It should be noted that the above limitation is an inherent limitation of any algorithm thatattempt sequene segmentation. Being unsupervised one, our algorithm requires a bit slower1The e�et of uni�ation of models is very infrequent in the proess of sequene segmentation and thereforewas not treated.
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Figure 5.6: A shemati desription of the algorithm based on Soft Clustering-NoBA pro-edure. Compare this sheme to the one in Fig. 5.4.alternation rates - about two or three times longer segments than the distinguishable ones, butthat is quite reasonable.There is one more limitation that is spei� to our algorithm - the averaging window size.At the moment the size of the window is an external parameter and we an not alter swithingrates that are faster than one swith per window. We want to note, that while large windowsdiminish our ability to distinguish between quikly alternating soures, they provide us witha more on�dent segmentation (i.e. we have a signi�ant di�erene in P (Tj jxi) of the modelthat is ative on a segment and all the rest models). For too small windows the segmentationmay appear to be too noisy to be of any usefulness, as well as the segmentation proess may\get lost" and suggest some oasional and meaningless loal minima segmentation, espeiallyif the input data is noisy. Thus the orret hoie of the size of the averaging window is a hardproblem by itself we are working on now. Currently the size of the window is manually hosendepending on the kind of the input data.Usage of the BAAs appeared in pratial appliations we had, it is better to make just a single pass in the BAloop instead of running it till onvergene. This means that our soft lustering proedure doesnot use the BA, but rather makes the alulation from the BA loop a single time between twoonsequent retrains of T , as shown in Fig. 5.7.This happens due to the following reason. When we do not run the BA loop till onvergenewe spend less time looking for the optimal assignment probabilities P (Tj jxi) and more in trainingnew sets of models T . Sine T is the determining omponent of the mixture, a more extensivesearh over the spae of possible T -s is bene�ial - we give our algorithm the possibility toorret the hoie of T while it looks for the optimal assignment probabilities. See Fig. 5.6 for



Chapter 5: Unsupervised Sequene Segmentation 41Soft Clustering-NoBA(T , P (T�), �)Repeat until onvergene:1. 8i; j : wj(xi) = P (Tj jxi) = P (Tj)e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)3. 8j : Tj = Learn PST(�x, �wj)Figure 5.7: Soft Clustering-NoBA proedurea shemati desription of this new version of the algorithm. The \no-BA" modi�ation of thealgorithm was suessfully used in our [BSMT01℄ and [SBT01a℄ works.Convergene of the algorithmUnfortunately at the moment we do not have a proof of onvergene of our algorithm. Atually,the soft lustering proedure sometimes enters small \osillations" around the point of onver-gene (very small amounts of data pass from one model to another and bakwards) and does notonverge in the strit sense. This happens beause a stronger model an \steel" some data froma weaker one using the smoothing window. But this weakens the strong model (sine the datastolen has di�erent statistial struture and adds noise) and at the next iteration it looses thestolen data bak. The onvergene may be fored by external ontrol (like limiting the numberof iterations, enlarging � inside the lustering proess or entering small perturbations if theproess does not onverge for a long time), but we see this as an \inelegant" solution. Hopefullythe problem will be solved with the improvements of the algorithm suggested in Ch. 7.
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Chapter 6Appliations6.1 Multilingual Texts SegmentationThe �rst appliation desribed here may look a bit arti�ial (though we do not deny a possibilityof �nding a similar problem in the real life), but it is very useful for general understanding ofour algorithm, sine the data used is well explored and intuitively feasible.In this example we onstrut a syntheti text omposed of alternating fragments of �ve othertexts in �ve di�erent languages: English, German, Italian, Frenh and Russian, using standardtransripts to onvert all into lower ase Latin letters with blank substituting all separators. Thelength of eah fragment taken is 100 letters, whih means that we are swithing languages everytwo sentenes or so. The total length of the text is 150000 letters (30000 from eah language).We made several independent runs of our algorithm, when based on the Soft Clustering-NoBA proedure (see Fig. 5.6). In every run after about 2000 aumulated innermost (Soft Clust-ering-NoBA loop) iterations we got a lear-ut, orret segmentation of the text into segmentsorresponding to the di�erent languages, aurate up to a few letters (see Fig. 6.1 and 6.2 fora typial example). Moreover, in all runs further splitting of all 5 language models resulted instarvation and subsequent removal of 5 extra models, taking us bak to the same segmentationas before (see Fig. 6.4). Also, in most runs linguistially similar languages (English and Ger-man; Frenh and Italian) separated at later stages of the segmentation proess, suggesting ahierarhial struture over the disovered data soures (Fig. 6.3 gives an example).6.1.1 The Clustering ProessTo give a better understanding of our algorithm we turn to demonstrate the details of thedevelopment (or evolution) of the lustering proess on the multilingual text example. We startwith disussion of the segmentation algorithm based on the Soft Clustering-NoBA proedure(Fig. 5.6), sine this one was used to obtain all the results presented in this work. We thenompare it with the algorithm based on Blahut-Arimoto proedure, when we run it till theonvergene (Fig. 5.4), and show the drawbaks of suh approah.In Fig. 6.3 we depit the probabilities of eah of the models in T , as alulated in step 2.of the Soft Clustering-NoBA proedure (Fig. 5.7), as a funtion of umulative number of thisiteration. The values of � and points of its inrements (after onvergene of the number ofmodels at the urrent value of �) are written below the x axis. \Falls down" and subsequent43
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50 Chapter 6: Appliations6.2.1 Very Short Introdution to Moleular BiologyProteins are sequenes of amino-aids. There are 20 di�erent amino-aids biologists distinguishin nature, thus eah protein may be viewed as a piee of text over a 20 letters alphabet. Thelength of most sequenes varies from a few tens to a bit over a thousand amino aids with typialvalues in the range of few hundreds.The funtion of a protein is determined by its sequene. Numerous proteins exhibit a modulararhiteture, onsisting of several sequene domains that often arry spei� biologial funtions(reviewed in [Bor92℄ and [BK96℄). For proteins whose struture has been solved, it an beshown in many ases that the haraterized sequene domains are assoiated with autonomousstrutural domains. In proteins of various organisms we may �nd domains that are responsiblefor similar biohemial funtionality. The sequenes of those domains will usually be resembling,but not idential. Charaterization of a protein family by its distint sequene domains (alsotermed 'modules') either diretly or through the use of domain 'motifs' or 'signatures' (shortsub-segments of the domain that are typial for most members of that family), is ruial forfuntional annotation and orret lassi�ation of newly disovered proteins.Many methods have been proposed for lassi�ation of proteins based on their sequeneharateristis. Most of them are based on a seed multiple sequene alignment (MSA - see[DEKM98℄) of proteins that are known to be related. The multiple sequene alignment anthen be used to haraterize the family in various ways: by de�ning harateristi motifs ofthe funtional sites (as in Prosite, [HBFB99℄), by providing a �ngerprint that may onsist ofseveral motifs (PRINTS-S, [ACF+00℄), by desribing a multiple alignment of a domain using ahidden Markov model (Pfam, [BBD+00℄), or by a position spei� soring matrix (BLOCKS,[HGPH00℄). All the above tehniques, however, rely strongly on the initial seletion of therelated protein segments for the MSA, usually hand rafted by experts, and on the quality ofthe MSA itself. Besides being in general omputationally intratable, when remote sequenes areinluded in a group of related proteins, establishment of a good MSA eases to be an easy taskand delineation of the domain boundaries proves even harder. This beomes nearly impossiblefor heterogeneous groups of proteins, where the shared motifs are not neessarily abundant ordo not ome in the same order.The advantage of our algorithm is that it does not attempt any alignment, but rather lusterstogether regions with similar statistis. The regions need not ome in the same order, nor theyneed to be idential - small variations are just a part of the VMM model. In addition, ouralgorithm is unsupervised - there is no need in prior seletion of groups of related proteins, thealgorithm will �nd them even in a bunh of unrelated stu�, as we will show shortly. This is evenmore attrating sine the algorithm may �nd some new struture or orrelations in the datawe possibly have not thought about. Thus our approah opens a new promising way to proteinsequene analysis, lassi�ation and funtional annotation.6.2.2 Experimental resultsIn this setion we demonstrate the results of appliation of our algorithm to several proteinfamilies. We used the modi�ed version of the algorithm, based on the Soft Clustering-NoBAproedure, that works with sets of multiple strings.The di�erent training sets were onstruted using the Pfam (release 5.4) and Swissprot(release 38 [BA00℄) databases. Various sequene domain families were olleted from Pfam. In



Chapter 6: Appliations 51eah Pfam family all members share a domain. An HMM detetor is built for that domainbased on an MSA of a seed subset of the family domain regions. The HMM is then veri�ed todetet that domain in the remaining family members. Multi-domain proteins therefore belongto to as many Pfam families as there are di�erent haraterized domains within them. In orderto build realisti, more heterogeneous sets, we olleted from Swissprot the omplete sequenesof all hosen Pfam families. Eah set now ontains a ertain domain in all its members, andpossibly various other domains appearing anywhere within some members.There were two types of PST models we got in the proess of lustering of the protein data:models that signi�antly outperform others on relatively short regions (and generally do pooron most other regions) - these we all detetors; and models that perform averagely over allsequene regions - these are \protein noise" (baseline) models. In what is following we analysewhat kind of protein segments were seleted by the detetors on three exemplary families. Ingeneral the \highlighted" segments may be haraterized as \segments with highly onservedstatistis (sequene), ommon to at least small amount of the input proteins". Being suh, thedeteted segments may be seen as signatures (or �ngerprints) of the domains, though in theases of very onserved domains the omplete domain may be overed by the detetor(s). In anyase, sine living organisms pass through a proess of natural seletion, we know that only thosewho have a funtioning set of proteins survive. Thus \noisy" segments orrespond to less ritialsetions of proteins and a \mistake" (substitution, insertion or deletion of amino aid) in thosesetions is possible - therefore we get lots of di�erent variants of those segments. As to segmentsseleted by the detetors - those are vitally important parts of the protein and a mistake there(during the repliation proess of the orresponding DNA segment) auses loss of funtionalityof the protein and subsequent death of the organism. Therefore those segments are (almost) thesame in all living organisms we see. The amount (or perentage) of proteins sharing a similarsegment among all the input proteins may be miserable and the similarity will still be found (inone example we had a domain that was ommon to only 12 out of 396 input proteins, and itstill was altered). This is a lear and strong advantage of our approah ompared to MSA, aswill be demonstrated here.In all the following examples we made several independent runs of our algorithm on eah ho-sen family. For eah family the di�erent runs onverged to the same (stable) �nal segmentation.In the presented graphs we show the segmentation of single representative protein sequenes outof the explored families. The Swissprot aession number of the representative sequenes shownwill be written at the top of eah graph.The Pax FamilyPax proteins (reviewed in [SKG94℄) are eukaryoti transriptional regulators that play ritialroles in mammalian development and in onogenesis. All of them ontain a onserved domain of128 amino aids alled the paired or paired box domain (named after the drosophila paired genewhih is a member of the family). Some ontain an additional homeobox domain that sueedsthe paired domain. Pfam nomenlature names the paired domain \PAX".The Pax proteins show a high degree of sequene onservation. One hundred and sixteenfamily members were used as a training set for the segmentation algorithm. In Fig. 6.8 wesuperimpose the predition of all resulting PST detetors over one representative family member.This Pax6 SS protein ontains both the paired and homeobox domains. Both have mathing
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Chapter 6: Appliations 53
(Pfam: topoII+Gyr, see Fig. b)

(Pfam: topoIV, see Fig. c)

(Pfam: topoII+topoIV, see Fig. d)
Yeast topoisomerase II
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(d) Yeast topoisomerase IIFigure 6.9: DNA topoisomerase II. (a) - Fusion event illustration, adapted from [MPN+99℄. ThePfam domain names are added in brakets, together with a referene to our results on a representativehomolog. Compare the PST signatures in �gures (b)-(d) with the shemati drawing in (a). It is lear thatthe eukaryoti signature is indeed omposed of the two prokaryoti ones, in the orret order, omittingthe C-terminus signature of gyrase B (short termed here as \Gyr").For the analysis we used a group of 164 sequenes that inluded both eukaryoti topoi-somerase II sequenes and baterial gyrase A and B sequenes (gathered from the union ofthe DNA topoisoII and DNA topoisoIV Pfam 5.4 families). We suessfully di�erentiate theminto sub-lasses. Fig. 6.9.d desribes a representative of the eukaryoti topoisomerase II se-



54 Chapter 6: Appliationsquenes and shows the signatures for both domains, gyrB/topoII and gyrA/topoIV. Fig. 6.9.band Fig. 6.9. demonstrate the results for representatives of the baterial gyrase B and gyraseA proteins, respetively. The same two signatures are found in all three sequenes, at the ap-propriate loations. Interestingly, in Fig. 6.9.b in addition to the signature of the gyrB/topoIIdomain another signature appears at the C-terminal region of the sequene. This signature isompatible with a known onserved region at the C-terminus of gyrase B,3 that is involved inthe interation with the gyrase A moleule.The relationship between the E. oli proteins gyrA and gyrB and the yeast topoisomeraseII (Fig. 6.9.a) provides a prototypial example of a fusion event of two proteins that form aomplex in one organism into one protein that arries a similar funtion in another organism.Suh examples have lead to the idea that identi�ation of those similarities may suggest therelationship between the �rst two proteins, either by physial interation or by their involvementin a ommon pathway [MPN+99, EIKO99℄. The omputational sheme we present an be usefulin searh for these relationships.The Glutathione S-Transferases (GST)The glutathione S-transferases (GST) represent a major group of detoxi�ation enzymes (re-viewed in [HP95℄). There is evidene that the level of expression of GST is a ruial fator indetermining the sensitivity of ells to a broad spetrum of toxi hemials. All eukaryoti speiespossess multiple ytosoli GST isoenzymes, eah of whih displays distint binding properties.A large number of ytosoli GST isoenzymes have been puri�ed from rat and human organs.On the basis of their sequenes they have been lustered into �ve separate lasses designatedlass alpha, mu, pi, sigma, and theta GST. The hypothesis that these lasses represent separatefamilies of GST is supported by the distint struture of their genes and their hromosomalloation. The lass terminology is deliberately global, attempting to inlude as many GSTs aspossible. However, it is possible that there are sub-lasses that are spei� to a given organismor a group of organisms. In those sub-lasses the proteins may share more than 90% sequeneidentity, but these relationships are masked by their inlusion in the more global lass. Thelassi�ation of a GST protein with weak similarity to one of these lasses is sometimes a dif-�ult task. In partiular, the de�nition of the sigma and theta lasses is impreise. Indeed inthe PRINTS [ACF+00℄ database only the three lasses, alpha, pi, and mu have been de�ned bydistint sequene signatures, while in Pfam all GSTs are lustered together, for lak of sequenedissimilarity.Three hundred and ninety six Pfam family members were segmented jointly by our algorithm,and the results were ompared to those of PRINTS (as Pfam lassi�es all as GSTs). Five distintsignatures were found: (1) A typial weak signature ommon to many GST proteins that ontainno sub-lass annotation. (2) A sharp peak after the end of the GST domain appearing exatlyin all 12 out of 396 (3%) proteins where the elongation fator 1 gamma (EF1G) domain sueedsthe GST domain (Fig. 6.10.a). (3) A lear signature ommon to almost all PRINTS annotatedalpha and most pi GSTs (Fig. 6.10.b). The last two signatures require more knowledge ofthe GST superfamily. (4) The theta and sigma lasses are abundant in nonvertebrates. Asmore and more of these proteins are identi�ed it is expeted that additional lasses will bede�ned. The �rst evidene for a separate sigma lass was obtained by sequene alignments of3Corresponding to the Pfam \DNA gyraseB C" family.
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56 Chapter 6: Appliationsrelated to the �ve mammalian lasses. This putative theta sub-lass, the previous signaturesand the undeteted PRINTS mu sub lass are all urrently further investigated.
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PAX homeoboxFigure 6.11: Pax MSA pro�le onservation. We plot the lustal X onservation sore of the PAX6SS protein against an MSA of all Pax proteins. While the predominant paired/PAX domain is diserned,the homeobox domain (appearing in about half of the sequenes) is lost in the bakground noise. Comparethis graph to the one in Fig. 6.8.Comparative resultsIn order to evaluate our �ndings we have performed three unsupervised alignment driven exper-iments using the same sets desribed above: an MSA was omputed for eah set using lustalX [JTG+98, Linux version 1.81℄. We let lustal X ompare the level of onservation betweenindividual sequenes and the omputed MSA pro�le in eah set. Qualitatively these graphsresemble ours, apart from the fat that they do not o�er separation into distint models.We briey reount the results we got: the Pax family alignment (shown in Fig. 6.11) disernedthe dominant Pax domain, but did not learly eluidate the homeobox domain existing in abouthalf of the sequenes and learly seen in Fig. 6.8 (ompare Fig. 6.11 with Fig. 6.8). For typeII topoisomerases the Gyrase B C-terminus unit from Fig. 6.9.b an be diserned from themain unit, but with a muh lower peak. And the lear sum of two signatures we obtained forthe eukaryoti sequenes (Fig. 6.9.d) is lost in noise. In the last and hardest ase the MSAapproah tells us nothing. All GST domain graphs look nearly idential preluding any possiblesubdivision. And the 12 (out of 396) instanes of the EF1G domain are ompletely lost at thealignment phase.



Chapter 7Disussion and Further Work7.1 DisussionThe sequene segmentation algorithm we desribe and evaluate in this work is a ombinationof several di�erent information theoreti ideas and priniples, naturally ombined into one newoherent proedure. The ore algorithm, the onstrution of PST, is essentially a soure od-ing loss-less ompression method. It approximates a omplex stohasti sequene by a Markovmodel with variable memory length. The power of this proedure, as demonstrated on bothnatural texts and on protein sequenes [RST96, BY01℄, is in its ability to apture short strings(suÆxes) that are signi�ant preditors - thus good features - for the statistial soure. Weombine the PST onstrution with another information theoreti idea - the MDL priniple -and obtain a more eÆient estimation of the PST, ompared with its original learning algo-rithm. In addition, the new algorithm is ompletely non-parametri and thus perfetly suits forunsupervised learning problems.Our seond key idea is to embed the PST onstrution in a lossy ompression framework byadopting the rate-distortion theory into a ompetitive learning proedure. We treat the PSTas a model of a single statistial soure and use the rate distortion framework to partition thesequenes between several suh models in an optimal way. Here we spei�ally obtain a moreexpressive statistial model, as mixtures of (short memory, ergodi) Markov models lay outsideof this lass, and an be aptured only by muh deeper Markov models. This is a lear advantageof our urrent approah over mixtures of HMMs (as done in [FST98℄) sine mixtures of HMMsare just HMMs with onstrained state topology.The analogy with rate-distortion theory enables us to take advantage of the trade-o� betweenompression (rate) and distortion, and use the Lagrange multiplier �, required to implement thistrade-o�, as a resolution parameter. The deterministi annealing framework follows naturally inthis formulation and provides us with a simple way to obtain hierarhial segmentation of veryomplex sequenes. As long as the underlying statistial soures are distint enough, omparedto the average alternation rate between them and the total amount of data from eah soure,our segmentation sheme should perform well.In our experiments with segmentation of multilingual text sequenes (mixtures of Europeanlanguages) we demonstrated the ability of our algorithm to di�erentiate between the languageswith a preision of few letters, even when the languages are swithed every 30-40 letters. The57



58 Chapter 7: Disussion and Further Workminimal amount of text (from eah language) needed to perform any segmentation appeared tobe around 6000-8000 letters.Our experiments with protein families demonstrated a number of lear advantages of theproposed algorithm: it is fully automated; it does not require or attempt an MSA of the inputsequenes; it handles heterogeneous groups well and loates domains appearing only few times inthe data; by nature it is not onfused by di�erent module orderings within the input sequenes;it appears to seldom generate false positives; and it is shown to surpass HMM lustering in atleast one hard instane.In our opinion the new tool may suggest a new perspetive on protein sequene organizationat large. Statistial onservation is unlike onventional sequene onservation. Regions maybe statistially idential, while ompletely di�erent from the alignment point of view (like inthe ase of multilingual texts). We hope that this new, muh more exible notion of sequeneonservation will eventually help better understand the onstraints shaping the world of knownproteins.7.2 Further WorkThere is a plenty of diretions to take our algorithm to both in the appliative and in thetheoretial �elds.In the appliative �eld it would be extremely interesting to run our algorithm on all knownproteins. The top-down organization of proteins may bring new interesting insights into theompliated world of biology. We also think about trying our algorithm on additional types ofdatasets, suh as DNA sequenes, network ow, spike trains, speeh signals, stok rates, et.In the theoretial aspet we see two independent parts in our algorithm: training of new setof models given a segmentation, and �nding a \good"1 segmentation given a set of models.We think that there is still plae for improvement of the PST model. We may try to improvethe ompression ratio by uniting together son nodes with similar statistis (like it is done in the[RST95℄ work). We may also try to improve the time omplexity of the algorithm by embeddingthe ideas of the [AB00℄ work to our ase of MDL-oriented learning of PSTs. The MDL odingof a single node in PST may also be improved, as was disussed in our talk with Adi Wynner.As to the segmentation of a sequene with a given set of models, our main aim at the momentis to get rid of the �xed size averaging window. We think that the way to do this lies throughsegmentation proess similar to as it is done in HMMs. Hopefully, with a new segmentationproedure we will also be able to prove the onvergene of our algorithm. It seems like we shouldobtain and prove a monotoni derease of the total ode length, and not just an inrease of thelikelihood of the data, as it is done in the proof of onvergene of the EM algorithm. And itseems like HMM-like formulation of the segmentation proedure may help us with this.We denote by hi = x1::xi�1 the \history" preeding xi. Then P (Tj jhi) is the prior probabilitythat Tj is the generating model at index i of the sequene, and P (Tj jxi; hi) is the posterior ofTj . This time we de�ne the distane between xi and Tj to be negative log likelihood Tj gives toxi only - we do not use the averaging window:d(xi; Tj) = � lnP (xijTj)1Our experiene with the BA points out that possibly we do not always want to get the best segmentationright away.



Chapter 7: Disussion and Further Work 59Thus our assignment probabilities in 1. of the Soft Clustering-NoBA proedure (Fig. 5.7) arede�ned as: P (Tjjxi; hi) = P (Tj jhi)e� lnP (xijTj)Z(xi; �)Where Z(xi; �) is a normalization fator.The sequential dependenies in the data (the limitation of the swithing rate) are now ex-pressed through the prior probabilities that are not onstant over the sequene any more:P (Tj jhi) =X� P (T�jxi�1; hi�1)P (T� ! Tj)Here P (T� ! Tj) is the probability that a model T� is swithed to a model Tj at plae i, andP (T�jxi�1; hi�1) is the posterior probability of T� at index i� 1.The only thing left to de�ne now are the transition probabilities P (T� ! T�). If we de�nethem to be some arbitrary onstant: P (T� ! T�) = ��� , we will get averaging windows ofexponential form (whih, we think, should be better than uniform averaging windows we havenow). Another option is to try to estimate those probabilities, as it is done in the Baum-Welsh algorithm (see [Rab86℄ for an overview). One more option is to alulate ��� using MDLpriniples and to prove some upper bound on the ompression ratio we get ompared to theoptimal one we ould get. I.e. we may try to improve the results of [HW98℄ for the ase whenthe prediting models (experts) are known.
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